• Title/Summary/Keyword: Time series forecasting

Search Result 585, Processing Time 0.028 seconds

Forecasting Economic Impacts of Construction R&D Investment: A Quantitative System Dynamics Forecast Model Using Qualitative Data (건설 분야 정부 R&D 투자의 사업별 경제적 파급효과 분석 - 정성적 자료 기반의 시스템다이내믹스 예측모형 개발 -)

  • Hwang, Sungjoo;Park, Moonseo;Lee, Hyun-Soo;Jang, Youjin;Moon, Myung-Gi;Moon, Yeji
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.131-140
    • /
    • 2013
  • Econometric forecast models based on past time-series data have been applied to a wide variety of applications due to their advantages in short-term point estimating. These models are particularly used in predicting the impact of governmental research and development (R&D) programs because program managers should assert their feasibility due to R&D program's huge amount of budget. The construction governmental R&D programs, however, separately make an investment by dividing total budget into five sub-business area. It make R&D program managers difficult to understand how R&D programs affect the whole system including economy because they are restricted with regard to many dependent and dynamic variables. In this regard, system dynamics (SD) model provides an analytic solution for complex, nonlinear, and dynamic systems such as the impacts of R&D programs by focusing on interactions among variables and understanding their structures. This research, therefore, developed SD model to capture the different impacts of five construction R&D sub-business by considering different characteristics of sub-business area. To overcome the SD's disadvantages in point estimating, this research also proposed the method for constructing quantitative forecasting model using qualitative data. Understanding the different characteristics of each construction R&D sub-business can support R&D program managers to demonstrate their feasibility of capital investment.

An Empirical Study on Predictive Modeling to enhance the Product-Technical Roadmap (제품-기술로드맵 개발을 강화하기 위한 예측모델링에 관한 실증 연구)

  • Park, Kigon;Kim, YoungJun
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.1-30
    • /
    • 2021
  • Due to the recent development of system semiconductors, technical innovation for the electric devices of the automobile industry is rapidly progressing. In particular, the electric device of automobiles is accelerating technology development competition among automobile parts makers, and the development cycle is also changing rapidly. Due to these changes, the importance of strategic planning for R&D is further strengthened. Due to the paradigm shift in the automobile industry, the Product-Technical Roadmap (P/TRM), one of the R&D strategies, analyzes technology forecasting, technology level evaluation, and technology acquisition method (Make/Collaborate/Buy) at the planning stage. The product-technical roadmap is a tool that identifies customer needs of products and technologies, selects technologies and sets development directions. However, most companies are developing the product-technical roadmap through a qualitative method that mainly relies on the technical papers, patent analysis, and expert Delphi method. In this study, empirical research was conducted through simulations that can supplement and strengthen the product-technical roadmap centered on the automobile industry by fusing Gartner's hype cycle, cumulative moving average-based data preprocessing, and deep learning (LSTM) time series analysis techniques. The empirical study presented in this paper can be used not only in the automobile industry but also in other manufacturing fields in general. In addition, from the corporate point of view, it is considered that it will become a foundation for moving forward as a leading company by providing products to the market in a timely manner through a more accurate product-technical roadmap, breaking away from the roadmap preparation method that has relied on qualitative methods.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Forecasting Hourly Demand of City Gas in Korea (국내 도시가스의 시간대별 수요 예측)

  • Han, Jung-Hee;Lee, Geun-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • This study examined the characteristics of the hourly demand of city gas in Korea and proposed multiple regression models to obtain precise estimates of the hourly demand of city gas. Forecasting the hourly demand of city gas with accuracy is essential in terms of safety and cost. If underestimated, the pipeline pressure needs to be increased sharply to meet the demand, when safety matters. In the opposite case, unnecessary inventory and operation costs are incurred. Data analysis showed that the hourly demand of city gas has a very high autocorrelation and that the 24-hour demand pattern of a day follows the previous 24-hour demand pattern of the same day. That is, there is a weekly cycle pattern. In addition, some conditions that temperature affects the hourly demand level were found. That is, the absolute value of the correlation coefficient between the hourly demand and temperature is about 0.853 on average, while the absolute value of the correlation coefficient on a specific day improves to 0.861 at worst and 0.965 at best. Based on this analysis, this paper proposes a multiple regression model incorporating the hourly demand ahead of 24 hours and the hourly demand ahead of 168 hours, and another multiple regression model with temperature as an additional independent variable. To show the performance of the proposed models, computational experiments were carried out using real data of the domestic city gas demand from 2009 to 2013. The test results showed that the first regression model exhibits a forecasting accuracy of MAPE (Mean Absolute Percentage Error) around 4.5% over the past five years from 2009 to 2013, while the second regression model exhibits 5.13% of MAPE for the same period.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Assessment of Scale Effects on Dynamics of Water Quality and Quantity for Sustainable Paddy Field Agriculture

  • Kim, Min-Young;Kim, Min-Kyeong;Lee, Sang-Bong;Jeon, Jong-Gil
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Modeling non-point pollution across multiple scales has become an important environmental issue. As a more representative and practical approach in quantifying and qualifying surface water, a modular neural network (MNN) was implemented in this study. Two different site-scales ($1.5\;{\times}\;10^5$ and $1.62\;{\times}\;10^6\;m^2$) with the same plants, soils, and paddy field management practices, were selected. Hydrologic data (rainfall, irrigation and surface discharge) and water quality data (time-series nutrient loadings) were continuously monitored and then used for the verification of MNN performance. Correlation coefficients (R) for the results predicted from the networks versus measured values were within the range of 0.41 to 0.95. The small block could be extrapolated to the large field for the rainfall-surface drainage process. Nutrient prediction produced less favorable results due to the complex phenomena of nutrients in the drainage water. However, the feasibility of using MNN to generate improved prediction accuracy was demonstrated if more hydrologic and environmental data are provided. The study findings confirmed the estimation accuracy of the upscaling from a small-segment block to large-scale paddy field, thereby contributing to the establishment of water quality management for sustainable agriculture.

A Case Study of WRF Simulation for Surface Maximum Wind Speed Estimation When the Typhoon Attack : Typhoons RUSA and MAEMI (태풍 내습 시 지상 최대풍 추정을 위한 WRF 수치모의 사례 연구 : 태풍 RUSA와 MAEMI를 대상으로)

  • Jung, Woo-Sik;Park, Jong-Kil;Kim, Eun-Byul;Lee, Bo-Ram
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.517-533
    • /
    • 2012
  • This study calculated wind speed at the height of 10 m using a disaster prediction model(Florida Public Hurricane Loss Model, FPHLM) that was developed and used in the United States. Using its distributions, a usable information of surface wind was produced for the purpose of disaster prevention when the typhoon attack. The advanced research version of the WRF (Weather Research and Forecasting) was used in this study, and two domains focusing on South Korea were determined through two-way nesting. A horizontal time series and vertical profile analysis were carried out to examine whether the model provided a resonable simulation, and the meteorological factors, including potential temperature, generally showed the similar distribution with observational data. We determined through comparison of observations that data taken at 700 hPa and used as input data to calculate wind speed at the height of 10 m for the actual terrain was suitable for the simulation. Using these results, the wind speed at the height of 10 m for the actual terrain was calculated and its distributions were shown. Thus, a stronger wind occurred in coastal areas compared to inland areas showing that coastal areas are more vulnerable to strong winds.

A Study of Short-term Won/Doller Exchange rate Prediction Model using Hidden Markov Model (은닉마아코프모델을 이용한 단기 원/달러 환율예측 모형 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.229-235
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

A Study of Exchange rate Prediction Model using Model-based (모델기반 방법론을 이용한 환율예측 모형 연구)

  • Jeon, Jin-Ho;Moon, Seok-Hwan;Lee, Chae-Rin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.547-549
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

  • PDF