• 제목/요약/키워드: Time series forecast model

검색결과 276건 처리시간 0.022초

COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석 (Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index))

  • 이충호;박근식
    • 한국항만경제학회지
    • /
    • 제37권4호
    • /
    • pp.161-173
    • /
    • 2021
  • 2008년도 미국 리먼브라더스 파산으로 인한 미국발 금융위기의 파급 효과로 전 세계적으로 맞은 경제위기 상황에서 해운산업 또한 폭락하였으며, 부정기선 시장은 이후 13년 간 불황을 유지해왔다. 2020년 COVID-19 팬데믹으로 불안정안 세계경제 상황에서 해운시장 또한 폭락하여 어려움을 겪었지만, 예상과 다르게 2020년 말부터 상승세로 전환되며 2021년에는 2008년도 호황기의 용선료 수준을 넘어서서 계속적으로 상승세를 유지하고 있다. 2021년 5월에 발표된 Clarksons 보고서에서는 2020년 코로나로 인한 물동량 감소가 2020년 말까지 코로나 이전 수준으로 회복되었고, 파나막스선형 선복 103~104% 정도의 부정기 벌크선 선복량이 항만에 체선으로 묶여있는 상황으로 벌크선의 수익은 최근 몇 달 동안 10년 만에 최고치로 상승한 것으로 나타났다. 이에 본 연구에서는 대표적인 건화물선 운임지수인 BDI에 영향을 미치는 요인으로 공급측면의 케이프와 파나막스 선형의 선복량과 체선율, 수요측면에서 주요 선적화물인 철광석과 석탄 물동량과의 인과성 검정과 벡터자기회귀모형(VAR)을 추정하여 충격반응함수와 예측오차분산분해를 통하여 COVID-19 펜데믹으로 인한 항만에서의 검역 강화와 하역인부의 전염병 감염 등으로 작업지연에 따른 체선 발생이 부정기선 시장 상승에 영향을 미치는지 분석하고 팬데믹 이후의 해운시황 예측에 도움이 되려는데 그 목적이 있다. 2016년 1월부터 2021년 7월까지의 데이터를 사용하여 변수들과 BDI의 인과성 검정 결과 선복량과 체선율 변수에서 인과성이 나타났으며, 충격반응함수의 결과 t시점에서 발생한 케이프,파나막스의 체선율 표준편차 1단위의 충격은 BDI에 양(+)의 반응을 보였으며 4기에 최고치를 기록한 후 점차 감소하였다. 충격에 대한 반응의 신뢰구간 상한과 하한 모두 양(+)의 구간으로 유의미한 반응이었다. 예측오차 분산분해분석 결과 BDI 변동에 영향을 미치는 설명력은 체선율, 선복량 순으로 나타났으며, 체선율(CGTN)은 운임지수의 BDI의 변화에 2기에는 2.5%의 설명력을 보였으며 4기부터 10%를 넘어 BDI상승에 25%까지 설명력을 갖는 것으로 나타났다. 이번 연구에서는 수요와 공급의 직접적인 요인 변수외에도 COVID-19 팬데믹으로 인한 항만에서 체선율 증가에 따른 공급량 감소 효과인 체선율을 변수로 사용하여 부정기 건화물선 운임지수(BDI)와의 인과성 및 영향에 대하여 분석하였다. 위드코로나로 전환되어 체선율이 감소할 경우 해운시황의 하락 리스크가 있을 것으로 예상 된다. 하지만 2023년부터 시행되는 선박 배기가스 탄소배출 감축 규제와 2021년 발주되는 신조선들의 인도시기는 2023년 이후이기 때문에 내년까지도 선복량은 부족할 수 밖에 없을 것으로 예상되어 체선율이 감소되고 해운시황이 하락하더라도 부정기 벌크선박들의 수익성은 2008년 이후의 불황기와는 다르게 나쁘지 않은 수준으로 유지될 것으로 예상된다. 이번 COVID-19 팬데믹발 세계경제 불안정성은 경제적 요인이 아닌 팬데믹으로 인한 생태적 위협으로부터 발생했다는 점에서 과거 경제위기와는 다른 관점에서 분석해 볼 필요가 있다고 생각되며 간접적으로 해운시장에서 공급감소 효과로 나타나는 체선율과의 인과성과 설명력을 분석하였다는데 의의가 있다고 할 수 있다.

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구 (Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence)

  • 조유정;손권상;권오병
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.103-128
    • /
    • 2021
  • 최근 주식의 수익률과 거래량을 설명하는 주요 요인으로서 투자자의 관심도와 주식 관련 정보 전파의 영향력이 부각되고 있다. 또한 인공지능과 같은 혁신 신기술을 개발보급하거나 활용하려는 기업의 경우 거시환경 및 시장 불확실성 때문에 기업의 미래 주식 수익률과 주식 변동성을 예측하기 어렵다는 문제를 가지고 있다. 이는 인공지능 활성화의 장애요인으로 인식되고 있다. 따라서 본 연구의 목적은 인공지능 관련 기술 키워드의 인터넷 검색량을 투자자의 관심 척도로 사용하여, 기업의 주가 변동성을 예측하는 기계학습 모형을 제안하는 것이다. 이를 위해 심층신경망 LSTM(Long Short-Term Memory)과 벡터자기회귀(Vector Autoregression)를 통해 주식시장을 예측하고, 기술의 사회적 수용 단계에 따라 키워드 검색량을 활용한 주가예측 성능 비교를 통해 기업의 투자수익 예측이나 투자자들의 투자전략 의사결정을 지원하는 주가 예측 모형을 구축하였다. 또한 인공지능 기술의 세부 하위 기술에 대한 분석도 실시하여 기술 수용 단계에 따른 세부 기술 키워드 검색량의 변화를 살펴보고 세부기술에 대한 관심도가 주식시장 예측에 미치는 영향을 살펴보았다. 이를 위해 본 연구에서는 인공지능, 딥러닝, 머신러닝 키워드를 선정하여, 2015년 1월 1일부터 2019년 12월 31일까지 5년간의 인터넷 주별 검색량 데이터와 코스닥 상장 기업의 주가 및 거래량 데이터를 수집하여 분석에 활용하였다. 분석 결과 인공지능 기술에 대한 키워드 검색량은 사회적 수용 단계가 진행될수록 증가하는 것으로 나타났고, 기술 키워드를 기반으로 주가예측을 하였을 경우 인식(Awareness)단계에서 가장 높은 정확도를 보였으며, 키워드별로 가장 좋은 예측 성능을 보이는 수용 단계가 다르게 나타남을 확인하였다. 따라서 기술 키워드를 활용한 주가 예측 모델 구축을 위해서는 해당 기술의 하위 기술 분류를 고려할 필요가 있다. 본 연구의 결과는 혁신기술을 기반으로 기업의 투자수익률을 예측하기 위해서는 기술에 대한 대중의 관심이 급증하는 인식 단계를 포착하는 것이 중요하다는 점을 시사한다. 또한 최근 금융권에서 선보이고 있는 빅데이터 기반 로보어드바이저(Robo-advisor) 등 투자 의사 결정 지원 시스템 개발 시 기술의 사회적 수용도를 세분화하여 키워드 검색량 변화를 통해 예측 모델의 정확도를 개선할 수 있다는 점을 시사하고 있다.

ARIMA모델에 의한 피용자(被傭者) 의료보험(醫療保險) 수진율(受診率), 건당진료비(件當診療費) 및 건당진료일수(件當診療日數)의 추이(推移)와 예측(豫測) (Trend and Forecast of the Medical Care Utilization Rate, the Medical Expense per Case and the Treatment Days per Cage in Medical Insurance Program for Employees by ARIMA Model)

  • 장규표;감신;박재용
    • Journal of Preventive Medicine and Public Health
    • /
    • 제24권3호
    • /
    • pp.441-458
    • /
    • 1991
  • 공무원 및 사립학교교직원 의료보험과 직장의료보험에서 입원, 외래별 수진을, 건당진료비 (1985년 기준 불변가격), 건당진료일수 등의 장래예측을 통해 의료보험 진료비 안정화 방안을 마련하는데 기초자료로 제시하기 위하여, 이들의 $1979{\sim}89$년간 월별 통계자료를 이용, Box-Jenkins model인 ARIMA 모델을 적용하여 1994년 까지의 수진을, 건당진료비 및 건당진료일수를 예측한 결과를 요약하면 다음과 같다. 수진을, 건당진료비 및 건당진료일수의 ARIMA 모형을 제시하면 다음 표와 같다. 상기의 ARIMA 모형을 기초로하여 향후 5년간의 수진율을 예측한 결과, 공교의료보험 입원의 경우, 1989년의 실측치는 0.068건 이었으며, 1990년과 1991년은 0.068건, 1992년과 1993년은 0.069건, 1994년은 0.070건으로 연평균 0.7%정도 증가될 것으로 예측되었으며, 외래의 경우, 1989년의 실측치는 3.487건이었으나 1990년은 3.530건, 1994년은 3.668건으로 연평균 1%정도 증가될 것으로 예측되었다. 직장의료보험 입원의 경우, 1989년의 실측치는 0.063건이었으며, 1990년부터 1994년까지 모두 0.063건으로 안정될 것으로 예측되었으며, 외래의 경우 1989년의 실측치는 2.984건이었으나, 1990년은 3.016건, 1994년은 3.154건으로 연평균 1.1% 정도 증가될 것으로 예측되었다. 건당진료비의 향후 예측치는 12월을 기준으로하여 1985년 불변가격으로 공교의료보험 입원의 경우, 1989년의 실측치는 332,751원이었으나, 1990년은 345,938원, 1994년은 354,511원으로 연평균 0.6%정도 증가될 것으로 예측되었으며, 외래의 경우, 1989년의 실측치는 11,925원이었으나, 1990년은 12,638원, 1994년은 12,904원으로 연평균 0.5%정도 증가될 것으로 예측되었다. 직장의료보험 입원의 경우, 1989년 실측치는 281,835원이었으나, 1990년은 282,524원, 1994년은 293,973원으로 연평균 1%정도 증가될 것으로 예측되었으며, 외래의 경우, 1989년 실측치는 11,599원이었으나, 1990년부터 1994년까지 11,585원으로 안정될 것으로 예측되었다. 건당진료일수의 향후 예측치는 12월을 기준으로 하여 공교의료보험 입원의 경우, 1989년의 실측치는 13.79일이었으며, 1990년은 13.82일, 1993년과 1994년은 13.85일로 거의 안정될 것으로 예측되었으며, 외래의 경우, 1994년까지 5일 정도로 안정될 것으로 예측되었다. 직장의료보험 입원의 경우, 1989년의 실측치는 12.23일이었으나, 1990년은 12.30일, 1994년은 12.85일로 연평균 1.1%정도 증가될 것으로 예측되었으며, 외래의 경우 1989년의 실측치는 4.61일이었으며 1990년부터 1994년까지 4.60일로 안정될 것으로 예측되었다.

  • PDF

핸디사이즈 운임지수 및 스팟용선료 변화에 영향을 미치는 요인 분석 (Factor Analysis Affecting on Changes in Handysize Freight Index and Spot Trip Charterage)

  • 이충호;김태우;박근식
    • 한국항만경제학회지
    • /
    • 제37권2호
    • /
    • pp.73-89
    • /
    • 2021
  • 핸디사이즈 벌크선 시장은 중대형 선박으로 운송이 불가능한 다양한 화물을 운송할 수 있으며, Spot용·대선 시장이 활성화 되어 있고 중대형 벌크선과 독립적인 성격의 시장으로 단기간에 변화하는 시황 및 용선료 변동성에 의한 위험이 보다 많은 시장이다. 본 연구에서는 부정기 벌크선 선형에서 핸디사이즈 운임지수(BHSI)와 Spot용선료에 영향을 미치는 요인들을 검정하고 요인들의 과거 값을 이용하여 종속변수의 동태적 반응을 파악 및 단기 예측을 위하여 벡터자기회귀모형(VAR)을 이용하여 분석을 하였다. 인과성 검정 결과 핸디사이즈의 주요 선적 화물인 원료탄, 일본후판, 열연강판의 가격과 선복량, 선박유가와 인과관계가 나타났으며, VAR모형의 적정시차와 안정성을 확인 후 충격반응함수와 예측오차분해분석을 실시하였다. 충격반응함수 분석 결과 원료탄 가격, 열연강판 가격, 선박유가 3가지 변수는 신뢰구간 상한과 하한이 모두 같은 구간으로 유의하다고 나타났으며, 열연강판 가격의 충격이 가장 유의한 영향을 미치는 것으로 확인되었다. 운임지수(BHSI)와 Spot용선료 두 종속변수 모두 거의 동일한 결과로 나타났으며 t시점에서 발생한 원료탄가격의 표준편차 1단위의 충격에 양(+)의 영향, 열연강판 가격의 충격에 양(+)의 영향, 선박유가의 충격에는 음(-)의 영향의 결과를 보였다. 예측오차 분산분해분석 결과 운임지수(BHSI)와 Spot용선료에 영향을 미치는 설명력은 열연강판 가격, 원료탄 가격, 선박유가, 일본후판 가격, 선복량 순으로 동일하게 나타났으며 열연강판 가격의 설명력은 3기부터 점차 상승하여 운임지수에는 30%, Spot용선료에는 26%까지 영향을 미친다고 나타났다. 기존 선행연구와 차별화하여 단기적인 시차 영향을 알아보기 위해 주요 선적화물의 월간 가격 데이터를 사용하여 분석을 수행하였으며, 월 단위 시황 예측이 가능한 유의미한 결과를 도출하였다. 이 연구가 핸디사이즈 선박을 운항하는 선사와 핸디사이즈 용·대선 시장 관계자들에게 단기적인 시황 예측에 도움이 될 수 있다는데 의의가 있다고 생각한다.