• Title/Summary/Keyword: Time of Collapse

Search Result 577, Processing Time 0.02 seconds

An Adaptive Undervoltage Load Shedding Against Voltage Collapse Based Power Transfer Stability Index

  • Nizam, Muhammad;Mohamed, Azah;Hussain, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.420-427
    • /
    • 2007
  • This paper highlights the comparison of a proposed methods named adaptive undervoltage load shedding based PTSI techniques for undervoltage load shedding and two previous methods named Fixed Shed Fixed Delay (FSFD) and Variable Shed Variable Delay (VSVD) for avoiding voltage collapse. There are three main area considerations in load shedding schemes as the amount of load to be shed, the timing of load shedding event, and the location where load shed is to be shed. The proposed method, named as adaptive UVLS based PTSI seem to be most appropriate among the uncoordinated schemes. From the simulation result can be shown the Adaptive UVLS based PTSI give faster response, accurate and very sensitive control for the UVLS control technique. This technique is effectively when calculating the amount to be shed. Therefore, it is possible to bring the voltage to the threshold value in one step. Thus, the adaptive load shedding can effectively reduce the computational time for control strategy.

Damage states of yielding and collapse for elevated water tanks supported on RC frame staging

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, mprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.587-601
    • /
    • 2018
  • Elevated water tanks are inverted pendulum type structures where drift limit is an important criterion for seismic design and performance evaluation. Explicit drift criteria for elevated water tanks are not available in the literature. In this study, probabilistic approach is used to determine maximum drift limit for damage state of yielding and damage state of collapse for the elevated water tanks supported on RC frame staging. The two damage states are defined using results of incremental dynamic analysis wherein a total of 2160 nonlinear time history analyses are performed using twelve artificial spectrum compatible ground motions. Analytical fragility curves are developed using two-parameter lognormal distribution. The maximum allowable drifts corresponding to yield and collapse level requirements are estimated for different tank capacities. Finally, a single fragility curve is developed which provides maximum drift values for the different probability of damage. Further, for rational consideration of the uncertainties in design, three confidence levels are selected and corresponding drift limits for damage states of yielding and collapse are proposed. These values of maximum drift can be used in performance-based seismic design for a particular damage state depending on the level of confidence.

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

An Efficient Unified Method to Compute Voltage Collapse Point (전압붕괴 임계점 계산을 위한 효율적 통합법)

  • Nam, Hae-Gon;Kim, Dong-Jun;Song, Chung-Gi;Mun, Yeong-Hwan;Kim, Tae-Gyun;Lee, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.951-957
    • /
    • 1999
  • The saddle node bifurcation (SNB) and the distance voltage instability are valuable information in power system planning and operation. This paper presents a new efficient, robust and unified strategy to compute the SNB by the combined use of the continuation power flow (CPF), Point of Collapse (PoC) method, and the method of a pair of multiple load flow solutions (PMLFS) with Lagrange interpolation utilizing only their advantages: the approximate nose curves and critical loading are determined fast by Lagrange-interpolating two stable and two unstable solutions obtained by using the robust CPF and PMLFS; the exact SNB is computed by the quadratically converging PoC method. The proposed method has been tested on Klos-Kerner 11-bus, New England 30-bus, IEEE 118-bus and KEPCO 791-bus systems. The method is found to be so efficient that computation time for determining the SNB of the KEPCO 791-bus system is 17.82 sec by a notebook PC with 300 MHz Pentium processor.

  • PDF

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

Voltage collapse proximity index based on system apparent power loss sensitivity and its application to VAR investment (피상전력 손실감도에 의한 전압붕괴 근접도 지표와 무효전력 투자)

  • 이상중;김건중;김원겸;김용배;엄재선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.10
    • /
    • pp.1290-1294
    • /
    • 1995
  • In this paper, a new voltage collapse proximity index (VCPI) based on system apparent power loss sensitivity is proposed. The newly proposed index .lambda.$^{Sloss}$ reaches -.inf. at system voltage collapse point and can be represented by .root..lambda.$^{Ploss}$$^{2}$+.lambda.$^{Qloss}$$^{2}$ where .lambda.$^{Ploss}$ and .lambda.$^{Qloss}$ are the VCPI based on the system active and reactive power loss sensitivity respectively. These indices can be used for the system VAR investment. .DELTA.Q [VAR] is invested, step by step, by the priority of the VCPI index given for each bus. The indices use information from normal power flow equations and their Jacobians. Computation time for deriving .lambda.$^{Sloss}$ is almost same as that for power flow calculation. Two case studies prove the effectiveness of the .lambda.$^{Sloss}$ index and the VAR investment algorithm proposed.

  • PDF

Development of Linear Static Alternate Path Progressive Collapse Analysis Procedure Using a Nonlinear Static Analysis Procedure (비선형정적해석 절차를 이용한 선형정적 연쇄붕괴 대체경로 해석방법 개발)

  • Kim, Jin-Koo;Park, Sae-Ro-Mi;Seo, Young-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.569-576
    • /
    • 2011
  • In this paper a new analysis procedure for evaluation of progressive collapse resisting capacity of a structure was proposed based on the nonlinear static analysis procedure. The proposed procedure produces analysis results identical to those obtained by the linear static analysis procedure specified in the GSA guidelines without iteration, therefore saving a lot of computation time and excluding the possibility of human errors during the procedure. To verify the validity of the proposed procedure, the two methods were applied to the analysis of a reinforced concrete moment frame and a steel braced frame subjected to loss of a first story column and the results were compared. According to the analysis results, the two methods produce identical results in the prediction of progressive collapse and the hinge formation. As iterative analysis is not required in the proposed method, significant amount of analysis time is saved in the proposed analysis procedure.

Experimental Study on Influence of Ground Collapse due to Ground Water Level Lowering (지하수위 저하가 지반함몰에 미치는 영향에 관한 실험적 연구)

  • Kim, Sukja;Jung, Kwansue
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.23-30
    • /
    • 2018
  • According to recent ground collapse occurrence, ground subsidence is increasing every year in downtown area, which is a social problem. The purpose of this study is to investigate the relationship between ground water level lowering and ground collapse through laboratory model experiments. After mixing 1:1 granite weathered soil with sand, sandy soil was formed as a relative density of 30%, 50%, and 80%. And then the changes of soil discharge with change of groundwater level were compared. The physical property of material of which particle distribution were well graded with maximu dry unit weight of $1.94kg/cm^3$ and internal friction angle of 37degrees. Ground water levels were measured at 10 cm, 20 cm, and 30 cm from the bottom. As a result, the experiment shows that the higher the groundwater level works the higher the discharge velocity and the magnitude of underground cavity also increases with elapsed time. Finally, the cumulative quantity of soil discharge occurred up to 30 kg at the elapsed time, 35 minutes. It was also confirmed that the range of ground collapse increased due to soil discharge with ground water level lowering.

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

The Splitting of MKhAT and Collapse of Soviet Theatre (므하트의 분리와 소비에트 연극의 해체)

  • Kim, Hye Ran
    • Cross-Cultural Studies
    • /
    • v.21
    • /
    • pp.53-86
    • /
    • 2010
  • This paper is focused on splitting of the first Soviet theatre, MKhAT and collapse of Soviet theatre. A close attention has been paid to Art Theatres's circumstances leading to splitting, critical conscience about division between ideal and real theatres and other concrete situation before the verge of collapse. Administrative reform of the Soviet theatre at the period of Perestroika and Glasnost', its results and conflicts, occurred in the process of transition into market system. These are considered under the premise of that the problems of MKhAT were not so different to the other soviet theatres at that time. As it is known that Moscow Art Theatre is a symbol of Russian theatre. And the status of MKhAT as a symbol of Russian theatre had formulated not only the well-known Stanislavsky' system and his legendary performance The Seagull, Three Sisters etc. It was made by party's effort to make MKhAT as the first Soviet theatre and by directors, artists and critics, they had believed and tried to protect idea of MKhAT as the 'battlements' of Soviet theatrical art. One of them is O. Yefremov, a former leader and artistic director from 1970 to 2000. Actually from the periods of Sovremennik Yefremov knew that does not exist the ideal MKhAT, excepting myths, legends and administrative attitudes. Nonetheless he chose the duty of MKhAT's artistic director to construct ideal MKhAT, theatre as the best moral institution, theatre as union based on common belief. It is same motive that he had led split of MKhAT. But split of theatre did not bring the expected results. After spliting MKhAT has become almost collapsed under collapse of USSR and subsequent turmoil at 1990's. And as soviet theatre disappeared into history, Russian theatre became lost its special significance, the super-theatre's idea.