• Title/Summary/Keyword: Time of Collapse

Search Result 583, Processing Time 0.024 seconds

BLACK HOLES IN GALACTIC NUCLEI: ALTERNATIVES AND IMPLICATIONS

  • Lee, Hyung-Mok
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • Recent spectroscopic observations indicate concentration of dark masses in the nuclei of nearby galaxies. This has been usually interpreted as the presence of massive black holes in these nuclei. Alternative explanations such as the dark cluster composed of low mass stars (brown dwarfs) or dark stellar remnants are possible provided that these systems can be stably maintained for the age of galaxies. For the case of low mass star cluster, mass of individual stars can grow to that of conventional stars in collision time scale. The requirement of collision time scale being shorter than the Hubble time gives the minimum cluster size. For typical conditions of M31 or M32, the half-mass radii of dark clusters can be as small as 0.1 arcsecond. For the case of clusters composed of stellar remnants, core-collapse and post-collapse expansion are required to take place in longer than Hubble time. Simple estimates reveal that the size of these clusters also can be small enough that no contradiction with observational data exists for the clusters made of white dwarfs or neutron stars. We then considered the possible outcomes of interactions between the black hole and the surrounding stellar system. Under typical conditions of M31 or M32, tidal disruption will occur every $10^3$ to $10^4$ years. We present a simple scenario for the evolution of stellar debris based on basic principles. While the accretion of stellar material could produce large amount of radiation so that the mass-to-light ratio can become too small compared to observational values it is too early to rule out the black hole model because the black hole can consume most of the stellar debris in time scale much shorter than mean time between two successive tidal disruptions. Finally we outline recent effort to simulate the process of tidal disruption and subsequent evolution of the stellar debris numerically using Smoothed Particle Hydrodynamics technique.

  • PDF

The Analysis and Evaluation of the Disturbances and Controller Effects to Power System Dynamic Voltage Stability (동적전압붕괴에 대한 외란의 영향평가 및 제어기기 적용효과 분석)

  • Lee, Geun-Joon;Choo, Jin-Bu;Kim, Kern-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.886-890
    • /
    • 1997
  • This paper presents shows various process of dynamic voltage collapses which were initiated by power system disturbances, and the impacts of dynamic voltage controllers. According to the analysis results, the composition of induction motors with short time constant strongly affect the voltage collapse. To escape the voltage collapse, adding fast acting reactive compensation device, such as SVC, at high reactive loss sensitivity(${\partia}Qloss/{\partia}PL$) point could be one of a good countermeasure.

  • PDF

A Study on the Collapse Accidents of the Temporary Structures (가설구조물의 붕괴재해에 관한 연구)

  • 백신원;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.142-147
    • /
    • 1999
  • Formwork is a temporary structure that supports its own weight and that of the freshly placed concrete as well as construction live loads including materials, equipments, and workmen. In designing and building formwork, the contractor should plan for economical construction without sacrificing quality or safety. But these temporary structures sometimes collapse during the concrete placing. Among the accidents and failures that occur during concrete construction, many are formwork failures, which usually happen at the time concrete is being placed. Generally some unexpected events cause one member to give way, then others become overloaded or misaligned and the whole formwork structure collapses. In this study, formwork failure events from 1994 to 1997 are analyzed using the structural analysis program. So the causes of the respective formwork failure are explored. Therefore, the present study provides a firm base to design the temporary structures such as formwork.

  • PDF

Control strategy against undesirable zone 3 protection with respect to voltage collapse (전압붕괴 측면에서의 Zone3 보호동작 억제를 위한 제어방안)

  • Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.24-26
    • /
    • 2005
  • This paper presents a framework for determining control strategies against unwanted tripping actions of relay operation that plays a very important role in cascading events leading to voltage collapse. The framework includes an algorithm for quick identification of possible zone 3 relay operation during voltage instability. The proposed approach comes up with control strategy of load shedding at the selected location with active power and relay margin criteria. In addition, Quasi Steady-State (QSS) simulation is employed to obtain time-related information which is valuable for both the timing and amount of control. The methodology is demonstrated through the modified New England 39-bus system.

  • PDF

Topology Optimization of Structures in Plastic Deformation using Finite Element Limit Analysis (유한요소 극한해석을 이용한 소성변형에서의 구조물의 위상최적화)

  • Lee, Jong-Sup;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.603-608
    • /
    • 2008
  • It is well known that the topology optimization for plastic problem is not easy since the iterative analyses to evaluate the objective and cost function with respect to the design variation are very time-consuming. The finite element limit analysis is an efficient tool which is possible to predict collapse modes and sequential collapse loads of a structure considering not only large deformation but also plastic material behavior with moderate computing cost. In this paper, the optimum topology of a structure considering large and plastic deformation is obtained using the finite element limit analysis. To verify the constructed optimization code, topology optimizations of some typical problems are performed and the optimal topologies by elastic design and plastic design are compared.

  • PDF

Control Strategy against Undesirable Zone 3 Relay Operation in Voltage Instability

  • Lee Byong-Jun;Song Hwa-Chang
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.144-151
    • /
    • 2005
  • This paper presents a framework for determining control strategies against unwanted tripping actions during relay operation that plays a very important role in cascading events leading to voltage collapse. The framework includes an algorithm for quick identification of possible zone 3 relay operation during voltage instability. Furthermore, it comes up with the control strategy of load shedding at the selected location with active power and relay margin criteria. In addition, Quasi Steady-State (QSS) simulation is employed to obtain time-related information that is valuable in the determination of control strategy. As a case study, an example applying the framework is shown with the modified New England 39-bus system.

Displacements Behavior of Rock Slope by Shaking Table Test (진동대 실험을 통한 암반비탈면의 변위 거동 특성)

  • Yoon, Won-Sub;Kang, Jong-Chul;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.

Implication of rubber-steel bearing nonlinear models on soft storey structures

  • Saiful Islam, A.B.M.;Hussain, Raja Rizwan;Jumaat, Mohammed Zamin;Mahfuz ud Darain, Kh.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.603-619
    • /
    • 2014
  • Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.

Full Mouth Rehabilitation of a Patient with Bite Collapse in the Molar Area Using Removable Partial Denture and Dental Implant Prosthetics

  • Hong, Jun-Won;Seo, Jae-Min;Seong, Dong-Hwan;Song, Gwang-Yeop;Park, Ju-Mi;Ahn, Seung-Geun
    • Journal of Korean Dental Science
    • /
    • v.3 no.2
    • /
    • pp.40-49
    • /
    • 2010
  • Dental clinicians often encounter cases wherein the patient's lost molar area was neglected and left untreated for an extended period of time, thereby causing the extrusion of opposite molars and occlusal disharmony as well as occlusion in the anterior teeth and consequently resulting in anterior displacement in the area. Clinicians normally carry out prosthetic treatment via occlusal plane lifting when such becomes absolutely necessary due to the lack of sufficient space needed for prosthetic therapy aimed at proper anterior and lateral induction. In this case report, we examined occlusal disharmony and VDO loss in a patient who had lost his molars and had not received prosthetic treatment for an extended period of time. We treated the maxillary area with dental implant prosthetics and Kennedy Class I RPD and the mandibular area with residual natural tooth-based implant placement and dental implant prosthetics. The patient reported treatment outcomes that were deemed satisfactory both functionally and aesthetically.

  • PDF

A SIMPLE DISK-HALO MODEL FOR THE CHEMICAL EVOLUTION OF OUR GALAXY

  • Lee, S.W.;Ann, H.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.55-71
    • /
    • 1981
  • On the basis of observational constraints, particularly the relationship between metal abundance and cumulative stellar mass, a simple two-zone disk-halo model for the chemical evolution of our Galaxy was investigated, assuming different chemical processes in the disk and halo and the infall rates of the halo gas defined by the halo evolution. The main results of the present model calculations are: (i) The halo formation requires more than 80% of the initial galactic mass and it takes a period of $2{\sim}3{\times}10^9$ yrs. (ii) The halo evolution is divided into two phases, a fast collapse phase ($t=2{\sim}3{\times}10^8$ yrs) during which period most of the halo stars $({\sim}95%)$ are formed and a later slow collapse phase which is characterized by the chemical enrichment due to the inflow of external matter to the halo. (iii) The disk evolution is also divided into two phases, an active disk formation phase with a time-dependent initial mass function (IMF) up to $t{\approx}6{\times}10^9$ yrs and a later steady slow formation phase with a constant IMF. It is found that at the very early time $t{\approx}5{\times}10^8$ yrs, the metal abundance in the disk is rapidly increased to ${\sim}1/3$ of the present value but the total stellar mass only to ${\sim}10%$ of the present value, finally reaching about 80% of the present values toward the end of the active formation phase.

  • PDF