• Title/Summary/Keyword: Time integration method

Search Result 1,165, Processing Time 0.027 seconds

Development of a Parametric Simulation Model by a Model Integration Method for Production System with Robots (모델 접속 기법에 의한 로봇 응용 생산시스템의 파라메트릭 시뮬레이션모델 개발)

  • Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.136-148
    • /
    • 1995
  • In this study, a model integration method is pressented as a new method for development of a parametric simulation model. This method enable us to integrate the special simulation models for each production subsystem into a large simulation model. Not only this large simulation model but also each special simulation model for each production subsytem can be used independently. Using this integration method man can reduce the development time and cost for simulation model development. To show the usefulness of this method, a simulation model for a production system with robots is developed by this model integration method. This simulation model is realized by the integration of two special simulation models, one model for a machining subsystem and the other model for a transport subsystem. The modeled production system consists of the robotic cells for machining and a transport subsystem which enable the material flow among the robotic cells. The flow of workpiece in each robotic cell is not fixed. All machines in a robotic cell are only served by robots.

  • PDF

Determination of Unknown Time-Dependent Heat Source in Inverse Problems under Nonlocal Boundary Conditions by Finite Integration Method

  • Areena Hazanee;Nifatamah Makaje
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.353-369
    • /
    • 2024
  • In this study, we investigate the unknown time-dependent heat source function in inverse problems. We consider three general nonlocal conditions; two classical boundary conditions and one nonlocal over-determination, condition, these genereate six different cases. The finite integration method (FIM), based on numerical integration, has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use backward differences for the time variable. Since the inverse problem is ill-posed with instability, we apply regularization to reduce the instability. We use the first-order Tikhonov's regularization together with the minimization process to solve the inverse source problem. Test examples in all six cases are presented in order to illustrate the accuracy and stability of the numerical solutions.

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Springback Analyses in Sheet Metal Stamping Processes and Industrial Applications (박판 성형에서의 스프링백 해석과 산업적 응용)

  • 양동열;이상욱;윤정환;유동진
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.22-28
    • /
    • 1999
  • The explicit and implicit time integration methods are applied effectively to analyze sheet metal stamping processes, which include the forming stage and the springback stage consecutively. The explicit time integration method has better merits in the forming stage including highly complicated three-dimensional contact conditions. By contrary, the implicit time integration method is better for analyzing springback since the complicated contact conditions are removed and the computing time to get the final static state is short. In this work, brief descriptions of the formulation and the factor study for springack simulations are presented. Further, the simulated results for the S-rail and the roof panel stamping processes are shown and discussed.

  • PDF

Error Estimation and Adaptive Time Stepping Procedure for Structural Dynamics (구조동역학에서의 오차 추정과 시간간격 제어 알고리즘)

  • 장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.190-200
    • /
    • 1996
  • Step-by-step time integration methods are widely used for solving structural dynamics problem. One difficult yet critical choice an analyst must make is to decide an appropriate time step size. The choice of time step size has a significant effect on solution accuracy and computational expense. The objective of this research is to derive error estimate for newly developed time integration method and develop automatic time step size control algorithm for structural dynamics. A formula for computing error tolerance is derived based on desired period resolution. An automatic time step size control strategy is proposed based on a normalized local error estimate for the generalized-α method. Numerical examples demonstrate the developed strategy satisfies general design criteria for time step size control algorithm for dynamic problem.

  • PDF

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.

Extended implicit integration process by utilizing nonlinear dynamics in finite element

  • Mohammadzadeh, Saeed;Ghassemieh, Mehdi;Park, Yeonho
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2017
  • This paper proposes a new direct numerical integration algorithm for solving equation of motion in structural dynamics problems with nonlinear stiffness. The new implicit method's degree of accuracy is higher than that of existing methods due to the higher order of the acceleration. Two parameters are defined, leading to a new family of unconditionally stable methods, which helps to take greater time steps in integration and eliminate concerns about the duration of solving. The method developed can be utilized for a number of solid plane finite elements, examples of which are given to compare the proposed method with existing ones. The results indicate the superiority of the proposed method.

Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics (서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용)

  • Jisoo, Hwanga;Jaewon, Moon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.872-884
    • /
    • 2022
  • With the development of the IoT industry, different types of time series data are being generated in various industries, and it is evolving into research that reproduces and utilizes it through re-integration. In addition, due to data processing speed and issues of the utilization system in the actual industry, there is a growing tendency to compress the size of data when using time series data and integrate it. However, since the guidelines for integrating time series data are not clear and each characteristic such as data description time interval and time section is different, it is difficult to use it after batch integration. In this paper, two integration methods are proposed based on the integration criteria setting method and the problems that arise during integration of time series data. Based on this, integration framework of a heterogeneous time series data was constructed that is considered the characteristics of time series data, and it was confirmed that different heterogeneous time series data compressed can be used for integration and various machine learning.

Numerical Characteristics of Hypersonic Air Chemistry and Application of Partially Implicit Time Integration Method (극초음속 공기반응의 수치해석적 특성과 부분 내재적 적분법 적용)

  • Kim, Seong-Lyong;Ok, Ho-Nam;Ra, Seung-Ho;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.1-8
    • /
    • 2003
  • Numerical characteristics of air chemistry associated with hypersonic flows are described and are compared with those of hydrogen oxygen combustion, applying the partially implicit time integration method to air chemistry. This paper reveals that the time integration of air chemistry needs a chemical Jacobian for stable calculations. However the positive real eigenvalues in air chemistry are relatively smaller than those of hydrogen combustion, and the numerical integration is less sensitive than that with combustion. lt is also found that the application of the partia1ly irnplicit method reduces the computing time without numerical instabilities.