• Title/Summary/Keyword: Time difference of arrival (TOA)

Search Result 33, Processing Time 0.02 seconds

Feature Extraction of Radar Signals Using Streaming Process (스트리밍 처리에 의한 레이더 신호 특성 추출)

  • Kim, Gwan-Tae;Ju, Young-Kwan;Jeon, Joongnam
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.31-38
    • /
    • 2020
  • Radar signal identification of electronic warfare is a technology that recognizes the pulse repetition interval (PRI) from a set of pulse description words (PDWs) generated by the signal receiver. Conventionally batch processing is widely used in which a number of PDWs are collected as a unit and identifies PRI from the batch. In this paper, we propose a feature extraction algorithm based on the streaming process. This technique does not wait to form a batch. Whenever a PDW(Pulse Description Word) is generated from the signal receiver, the streaming process tries to form a cluster of PDWs, and makes the DTOA (Difference of Time of Arrival) histogram, finds out the frame PRI based on the concentration ratio, and decides the number of stagger stages. Experiments proved that the proposed algorithm derives stable recognition results as the cluster size increases.

Performance Analysis of Pulse Positioning Using Adaptive Threshold Detector (ATD)

  • Chang, Jae Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This paper describes the measurement of pulse positioning (input time) to calculate a time of arrival (TOA) that takes from transmitting a signal from the target of multilateration (MLAT) system to receiving the signal at the receiver. In this regard, this paper analyzes performances of simple threshold method and level adjust system (LAS) method, which is one of the adaptive threshold detector (ATD) methods, among many methods to calculate pulse positioning of signal received at the receiver. To this end, Cramer-rao lower bound (CRLB) with regard to pulse positioning, which was measured when signals transmitted from a transponder mounted at the target were received at the receiver, was induced and then deviation sizes with regard to pulse positioning, which was measured with simple threshold and LAS methods through MATLAB simulations, were compared. Next, problems occurring according to a difference in amplitude of signals inputted to each receiver are described when pulse positioning is measured at multiple receivers located at a different distance from the target as is the case in the MLAT system. Furthermore, LAS method to resolve the problems is explained. Lastly, this study analyzes whether a pulse positioning error occurring due to the signal noise satisfies the requirement (6 nsec. or lower) recommended for the MLAT system when using these two methods.

Deinterleaving of Multiple Radar Pulse Sequences Using Genetic Algorithm (유전자 알고리즘을 이용한 다중 레이더 펄스열 분리)

  • 이상열;윤기천
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.98-105
    • /
    • 2003
  • We propose a new technique of deinterleaving multiple radar pulse sequences by means of genetic algorithm for threat identification in electronic warfare(EW) system. The conventional approaches based on histogram or continuous wavelet transform are so deterministic that they are subject to failing in detection of individual signal characteristics under real EW signal environment that suffers frequent signal missing, noise, and counter-EW signal. The proposed algorithm utilizes the probabilistic optimization procedure of genetic algorithm. This method, a time-of-arrival(TOA) only strategy, constructs an initial chromosome set using the difference of TOA. To evaluate the fitness of each gene, the defined pulse phase is considered. Since it is rare to meet with a single radar at a moment in EW field of combat, multiple solutions are to be derived in the final stage. Therefore it is designed to terminate genetic process at the prematured generation followed by a chromosome grouping. Experimental results for simulated and real radar signals show the improved performance in estimating both the number of radar and the pulse repetition interval.