• Title/Summary/Keyword: Time and motion studies

Search Result 345, Processing Time 0.029 seconds

Alternative analytic method for computing mean observation time in space-telescopes with spin-precession attitude motion

  • Juan, Bermejo-Ballesteros;Javier, Cubas;Francisco, Casas;Enrique, Martinez-Gonzalez
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.449-462
    • /
    • 2022
  • Space-telescopes placed in the Sun-Earth second Lagrange point (L2) observe the sky following a scan strategy that is usually based on a spin-precession motion. Knowing which regions of the sky will be more observed by the instrument is important for the science operations and the instrument calibration. Computing sky observation parameters numerically (discretizing time and the sky) can consume large amounts of time and computational resources, especially when high resolution isrequired.This problem becomesmore critical if quantities are evaluated at detector level instead of considering the instrument entire Field of View (FoV). In previous studies, the authors have derived analytic solutions for quantities that characterize the observation of each point in the sky in terms of observation time according to the scan strategy parameters and the instrument FoV. Analytic solutions allow to obtain results faster than using numerical methods as well as capture detailed characteristics which can be overseen due to discretization limitations. The original approach is based on the analytic expression of the instrument trace over the sky. Such equations are implicit and thusrequiresthe use of numeric solversto compute the quantities.In this work, a new and simpler approach for computing one ofsuch quantities(mean observation time) is presented.The quantity is first computed for pure spin motion and then the effect of the spin axis precession is incorporated under the assumption that the precession motion is slow compared to the spin motion.In this sense, this new approach further simplifies the analytic approach, sparing the use of numeric solvers, which reduces the complexity of the implementation and the computing time.

What is the Optimal Contraction Intensity and Duration in the Performance of Relaxation Techniques for Maximal Increase of Range of Motion? (관절가동범위 증진을 위한 이완 기법의 적절한 수축강도와 수축시간은?)

  • Shin, Seung-Sub
    • PNF and Movement
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Purpose: The purpose of this study was to review articles in order to establish optimal contraction intensity and duration in the performance of relaxation techniques for maximal increase in range of motion. Methods: The Cochrane, EBSCO, Embase, Medline, ProQuest, PubMed, ScienceDirect, and Scopus databases were used to search articles from 1990 to January 2016. The search terms were "contract relax," "hold relax," "muscle energy technique (MET)," and "proprioceptive neuromuscular facilitation (PNF) stretching." Only experimental human studies (randomized controlled trials) that compared the effects of varying intensity and duration of isometric contraction were included. Non-English language and unpublished studies were excluded. Results: A total of 2,156 articles were initially identified, with only five eventually meeting the inclusion and exclusion criteria. Three studies compared the effects of varying intensity in isometric contraction and two studies compared the effects of varying duration in isometric contraction with regard to range of motion (ROM). Two articles suggested that submaximal voluntary isometric contraction was more effective than maximum voluntary isometric contraction (MVIC) in the improvement of ROM. One article showed that a longer contraction time led to greater increases in ROM. Conclusion: Submaximal voluntary isometric contraction was recommended during contract-relax exercises in healthy people. Lack of evidence makes it difficult to suggest the optimal duration of isometric contraction during relaxation techniques. For future research, high-quality evidence will be needed to establish the optimal contraction intensity for maximum improvement of ROM.

Korean Children's Physical Knowledge Development Derived from Conversation (일상생활의 대화에서 나타난 아동의 물리지식 발달)

  • Kim, Young Suk;Lee, Hyeonjin;Kim, Kyung A
    • Korean Journal of Child Studies
    • /
    • v.28 no.4
    • /
    • pp.245-264
    • /
    • 2007
  • This study analyzed physical knowledge displayed in the utterances of 10 Korean children 23 - 76 months of age. Utterances were blocked into four-month time periods, except the first two months and classified into 5 categories including properties of physical objects and materials, friction, buoyancy, gravity, and the motion of physical objects. All five types of physical expressions were found in the data of the earliest period the percent age of the properties and motion was higher than the percent of friction, buoyancy, and gravity. Data suggested two transitional points of change in physical knowledge : 2-year-old's descriptions were based only on perceptually salient physical features 3- to 4-year-olds described only end-state results while children older than 4 included systematic causality.

  • PDF

Comparison of Driving Time between Stop-motion Method and Moving-motion Method

  • Kim, Soon-Ho;Kim, Chi-Su
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.139-145
    • /
    • 2018
  • Improvement of the speed of the gantry among equipment that mounts a chip using SMT can improve productivity. In order to improve the performance of the gantry, there are studies such as a method of increasing the speed of adsorption, the speed of the gantry by reducing the weight, and a method of facilitating the use of the gantry. But all of these are ways of improving equipment. In this paper, we propose a method to improve the speed of gantry mounting microchip. The method is to shorten the driving time of the gantry. To do this, calculate the driving time using the existing method. And we calculate the travel time using the method presented in this paper. As a result, the time calculated by the proposed method is reduced by 14%.

Consistency of PPP GPS and strong-motion records: case study of Mw9.0 Tohoku-Oki 2011 earthquake

  • Psimoulis, Panos;Houlie, Nicolas;Meindl, Michael;Rothacher, Markus
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.347-366
    • /
    • 2015
  • GPS and strong-motion sensors are broadly used for the monitoring of structural health and Earth surface motions, focusing on response of structures, earthquake characterization and rupture modeling. Several studies have shown the consistency of the two data sets within at certain frequency (e.g., 0.03

Hybrid dynamic control approach for constrained robot motion control with stiffness adaptability (제한 동작 로봇의 강성도 적응성을 갖는 하이브리드 동적 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Joon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.705-713
    • /
    • 1999
  • In this paper, we propose a new motion and force control methodology for constrained robots as an approach of hybrid discrete-continuous dynamical system. The hybrid dynamic system modeling of robotic manipulation tasks with constraints is presented, and the hybrid system control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference stiffness of robot manipulator is generated by the hybrid automata as a discrete state system and the control behavior of constrained system which has poor modeling information and time-varying constraint function is improved by the constrained robots as a continuous state system. The performance of the proposed constrained motion control system is successfully evaluated via experimental studies to the constraint tasks.

  • PDF

The Kinematical Analysis of Li Xiaopeng Motion in Horse Vaulting (도마운동 Li Xiaopeng 동작의 운동학적 분석)

  • Park, Jong-Hoon;Yoon, Sang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.81-98
    • /
    • 2003
  • The purpose of this study is to closely examine kinematic characteristics by jump phase of Li Xiaopeng motion in horse vaulting and provide the training data. In doing so, as a result of analyzing kinematic variables through 3-dimensional cinematographic using the high-speed video camera to Li Xiaopeng motion first performed at the men's vault competition at the 14th Busan Asian Games, the following conclusion was obtained. 1. It was indicated that at the post-flight, the increase of flight time and height and twisting rotational velocity has a decisive effect on the increase of twist displacement. And Li Xiaopeng motion showed longer flight time and higher flight height than Ropez motion with the same twist displacement of entire movement. Also the rotational displacement of the trunk at peak of COG was much short of $360^{\circ}$(one rotation) but twist displacement showed $606^{\circ}$. Likewise, Li Xiaopeng motion was indicated to concentrate on twist movement in the early flight. 2. It was indicated that at the landing, Li Xiaopeng motion gets the hip to move back, the trunk to stand up and the horizontal velocity of COG to slow down. This is thought to be the performance of sufficient landing, resulting from large security of rotational displacement of airborne and twist displacement. 3. It was indicated that at the board contact, Li Xiaopeng motion made a rapid rotation uprighting the trunk to recover slowing velocity caused by jumping with the horse in the back, and has already twisted the trunk nearly close to $40^{\circ}$ at board contact. Under the premise that elasticity is generated without the change of the feet contacting the board, it will give an aid to the rotation and twist of pre-flight. Thus, in the round-oH phase, the tap of waist according to the fraction and extension of hip joint and arm push is thought to be very important. 4. It was indicated that at the pre-flight, Li Xiaopeng motion showed bigger movement than the techniques of precedented studies rushing to the horse, and overcomes the concern of relatively low power of jump through the rapid rotation of the trunk. Li Xiaopeng motion secured much twist distance, increased rotational distance with the trunk bent forward, resulting in the effect of rushing to the horse. 5. At horse contact, Li Xiaopeng motion makes a short-time contact, and maintains horse take-off angle close to vertical, contributing to the increase of post-flight time and height. This is thought to be resulted from rapid move toward movement direction along with the rotational velocity of trunk rapidly earned prior to horse contact, and little shave of rotation axis according to twist motion because of effective twist in the same direction.

Effect of Fascial Distortion Model on the Pain and Movement of Neck Patient

  • Kim, Min Kyu;Lee, Woo Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • Purpose: This study compared the effectiveness of three methods, fascial distortion model (FDM), myofascial release (MFR), self-myofascial release (SMR), on the neck range of motion and pain. Methods: In this study, the collected data were processed statistically using SPSS version 22.0 for Windows. Descriptive statistics were used to analyze the general characteristics of the subjects. Repeated measure ANOVA was conducted to analyze the range of motion of the neck of the group and VAS, and Contras was used to see the difference in significance over time. One-way ANOVA was used to compare the differences among the groups and a post-hoc test was used. The significance level (${\alpha}$) was 0.05. Results: In the range of motion, the flexion and extension of the neck, right rotation, and left rotation were significantly different in the SMR, FDM, and MFR groups. The right lateral flexion showed significant differences in the FDM, MFR, and SMR groups. The VAS was similar in the groups at 2 and 4 weeks, but there was a significant difference among the FDM, MFR, and SMR groups at 6 weeks. Conclusion: In this study, MFR and MSR as well as FDM were effective in controlling the range of motion and pain control of the neck. Further studies will be needed to determine the effects of long-lasting treatments other than pain control. These studies and the present study will be used as a basis for ongoing research into the duration and method of application for musculoskeletal therapies.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

Comparison of Time study in Film-based versus PACS : Computed Tomography (시간분석법에 의한 필름시스템과 PACS의 비교 연구 : CT촬영을 중심으로)

  • Kweon, Dae-Cheol;Jeong, Woo-Jin;Chung, Kyung-Mo;Lee, Yong-Woo;Lee, Je-Ho
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.78-84
    • /
    • 2002
  • To evaluate the relative time required to perform a CT(computed tomography) examination in a filmless versus a film-based system and helical versus nonhelical studies. Time and Motion studies were performed in 175 consecutive CT examinations. Images from 85 examinations were electronically transferred to a PACS, and 90 were printed to film. The time required to obtain and electronically transfer the images or print the images to film and make the current and previous studies available to the radiologists for interpretation was recorded. The time required for a radiological technologist to complete a CT examination was reduced by 43% with the PACS compared with the film-based system and nonhelical was reduced 10-20% with helical studies. This reduction was due to the elimination of a transfer and printing, such as the printing at window or level settings. The use of PACS can result in the elimination of time tasks for the radiological technologist, resulting in marked reduction in examination time. This reduction can result in decreased cost and increased productivity in PACS operation.

  • PDF