• Title/Summary/Keyword: Time To Impact

Search Result 5,428, Processing Time 0.034 seconds

CSR Impact on the Firm Market Value: Evidence from Tour and Travel Companies Listed on Chinese Stock Markets

  • LEE, Jung Wan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.159-167
    • /
    • 2020
  • The study examines the impact of corporate social responsibility (CSR) activity on the firm market value, in particular, market capitalization of tour operators listed on Chinese stock markets. This study employs panel data analysis methods to examine endogeneity concerns in observational data. The balanced panel data includes a total of 1,296 observations with 27 cross-sections of tour operators listed on Chinese stock markets and with 48 time-specific periods from March 2006 to December 2017. The results indicate that CSR activity has a negative impact on the market value of the firm for the concurrent period, but from one-period time lag and afterwards CSR activity has a strong positive impact on the market value and sustains its positive impact on the market value even for a two-period time lag. The findings suggest that the economic effect of CSR activity on the firm market value tends to take some degree of lagged effects to be fully showcased in the market capitalization of tour operators and travel companies listed on Chinese stock markets. The findings suggest that, though CSR activity may carry some financial risk for an immediate short-term, tour operators must put a lot of time and effort into making CSR actions effective.

Real-time Impact Evaluation of a Capacity-Building Health Project in Lao PDR

  • LEE, KYE WOO;KIM, TAEJONG
    • KDI Journal of Economic Policy
    • /
    • v.37 no.4
    • /
    • pp.75-88
    • /
    • 2015
  • This study presents a real-time impact evaluation of a human capacity-building health project in Laos, financed by a Korean aid agency and executed jointly by Laotian and Korean higher educational agencies. The project aims to improve the health status of Laotians by enhancing practicing doctors' clinical performance capacity, to be attained by advancing academic achievement at the University of Health Sciences (UHS) in Laos. Therefore, this real-time impact evaluation adopted the difference-in-differences regression analysis method, showing that the project improved the academic achievement of the UHS students who were taught by the project fellowship awardees more, compared to the UHS students who were taught by non-fellowship faculty members. It remains to be evaluated whether these UHS students taught by the project fellowship recipients would also perform better clinically in public hospitals in the future.

  • PDF

Wind Power Generation: Its Impact on Peak Time and Future Power Mix (퐁력전원이 피크타임과 발전설비구성에 미치는 영향분석: 제3차 신재생에너지 기술개발 및 이용.보급 기본계획 기준)

  • Lee, Jin-Ho;Kim, Su-Duk
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.867-876
    • /
    • 2009
  • Although renewable power is regarded a way to active response to climate change, the stability of whole power system could be a serious problem in the future due to its uncertainties such as indispatchableness and intermittency. From this perspective, the peak time impact of stochastic wind power generation is estimated using simulation method up to year 2030 based on the 3rd master plan for the promotion of new and renewable energy on peak time. Result shows that the highest probability of wind power impact on peak time power supply could be up to 4.41% in 2030. The impact of wind power generation on overall power mix is also analyzed up to 2030 using SCM model. The impact seems smaller than expectation, however, the estimated investment cost to make up such lack of power generation in terms of LNG power generation facilities is shown to be a significant burden to existing power companies.

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

Impact Power Characteristics by Walking for Adults (성인 보행에 따른 충격력 특성에 관한 연구)

  • Kim, Kyoung-Woo;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.800-803
    • /
    • 2005
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. Running and jumping impact sound by child and walking by adult are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact power characteristics of real impact source in an apartment buildings. This study aims to investigate the impact power and impact time of normal walking and fast walking for 62 adults. It is shown that when the weight of the person increase, the maximum impact power increases. The impact power waveform for the adults walking varies for subjects walking types. The normal walking impact power lower than that of fast walking and impact time is higher than that of fast walking. The range of the impact power generated by adults walking is less than 1000 N.

  • PDF

Relationship between Impact and Shear Forces, and Shock during Running (달리기 시 충격력과 충격 쇼크 변인들과의 관계)

  • Park, Sang-Kyoon;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Objective: The purpose of this study was to determine the relationship between impact and shear peak force, and tibia-accelerometer variables during running. Method: Twenty-five male heel strike runners (mean age: 23.5±3.6 yrs, mean height: 176.3±3.3 m/s, mean mass: 71.8±9.7 kg) were recruited in this study. The peak impact and anteroposterior shear forces during treadmill running (Bertec, USA) were collected, and impact shock variables were computed by using a triaxial accelerometer (Noraxon, USA). One-way ANOVA was used to test the influence of the running speed on the parameters. Pearson's partial correlation was used to investigate the relationship between the peak impact and shear force, and accelerometer variables. Results: The running speed affected the peak impact and posterior shear force, time, slope, and peak vertical and resultant tibial acceleration, slope at heel contact. Significant correlations were noticed between the peak impact force and peak vertical and resultant tibia acceleration, and between peak impact average slope and peak vertical and resultant tibia acceleration average slope, and between posterior peak (FyP) and peak vertical tibia acceleration, and between posterior peak instantaneous slop and peak vertical tibial acceleration during running at 3 m/s. However, it was observed that correlations between peak impact average slope and peak vertical tibia acceleration average slope, between posterior peak time and peak vertical and resultant tibia acceleration time, between posterior peak instantaneous slope and peak vertical tibial acceleration instantaneous slope during running at 4 m/s. Conclusion: Careful analysis is required when investigating the linear relationship between the impact and shear force, and tibia accelerometer components during relatively fast running speed.

The Effects of Molybdenum and Nickel Addition on Impact Toughness of Austempered Ductile Cast Iron (오스템퍼 구상흑연주철의 충격인성에 미치는 Mo 및 Ni의 영향)

  • Park, Yoon-Woo;Chang, Hyun-Ku
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.459-466
    • /
    • 1988
  • This study was carried out in the austempering temperature and time after Ni, Mo addition in purpose of modification of impact toughness of austempered ductile irons. Addition of alloy element and austempering treatment of $900^{\circ}C$ 60 minutes followed by $300^{\circ}C$, $350^{\circ}C$ and $400^{\circ}C$ for 60 minutes, in this case impact value was increased by ideal mixed structure. But impact value was decreased when holing time is 120minutes, this is attributed to segregation and carbide precipitation from high carbon austenite. Highest impact value was obtained by $350^{\circ}C$ (Mo-addition) and $400^{\circ}C$ (Ni-addition). This phenomena was caused by presence of remained austenite. At all austempering temperature,, Ni-added specimen showed higher impact values than that of Mo-added specimen. And hardness property was affected by austempering temperature and holding time rather than amounts of alloying element.

  • PDF

Source Localization of an Impact on a Plate using Time-Frequency Analysis (시간 주파수 분석을 이용한 충격발생 위치 추정)

  • Park, Jin-Ho;Choi, Young-Chul;Lee, Jeong-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.107-111
    • /
    • 2005
  • It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses fer the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment.

  • PDF

Damage of scarf-repaired composite laminates subjected to low-velocity impacts

  • Cheng, Xiaoquan;Zhao, Wenyi;Liu, Shufeng;Xu, Yunyan;Bao, Jianwen
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.199-213
    • /
    • 2014
  • The damage characters of scarf repaired composite laminates subjected to low-velocity impact with various energy levels at different locations are studied experimentally. The results are compared with those of the original laminates which have no initial damage and don't need repair. The impact load-time history of the specimens, the velocity-time curves of the impactor, the post impact compressive strength of the specimens and the C-scan photographs of the damaged regions are obtained. The delamination threshold load and damage character of the specimen section at impact point are also studied. The results have shown that the impact response of a repaired composite laminate is sensitive to the location of the impact. The impact load and the delamination threshold load have shown different characters for specimens with different impact locations. The debonding characters of the adhesive and compressive strength after impact of the specimens are also influenced by impact locations.

Hand-Arm Vibration and Noise Levels of Double-Hammer Type and Oil-Pulse Type Impact Wrenches in Automobile Assembly Lines (자동차 조립라인에서 이중-헴머형(Double-hammer type) 임펙트 렌치와 오일-펄스형(Oil-pulse type)임펙트 렌치 에어공구의 국소진동가속도 및 소음수준)

  • Jeung, Jae-Yeal;Kim, Jung-Man
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.147-159
    • /
    • 1995
  • This study was conducted to introduce fundamental data of hand-arm vibration and noise exposure levels with impact wrenches(double-hammer impact wrenches and oil-pulse impact wrenches) used in automobile assembly lines considering the process variables and tool variables. In studing, products per day, required time screwing the bolts or nuts per bolts or nut were considered as process variables, and capacity of bolts or nuts, air consumptions per minute, tool weights, RPM were considered as tool variables. Hand-arm vibration levels of 3 axis in each hand were measured using the instruments compling with ISO/DIS 5349 and noise levels were measured using a noise logging dosimeter. The results were as follows : 1. Required time to screwing the bolt or nut by oil-pulse impact wrenches is shorter than double-hammer impact wrenches but total daily exposure time of oil-pulse impact wrenches was higher than double-hammer impact wrenches because the number of bolts or nuts per cycle was many. 2. Oil-pulse impact wrenches have been used to screwing the large bolt or nut in comparing with double-hammer impact wrenches and required time to screwing the bolts or nuts were shorter than double-hammer impact wrenches because oil-pulse impact wrenches were using high RPM and large air consumption per minute. Noise level of oil-pulse impact wrenches was 8 dB(A) lower than double-hammer impact wrenches. 3. Dominant hand-arm vibration levels of double-hammer impact wrenches in each hand were $8.24m/sec^2$ of Zh axis in right hand and $9.60m/sec^2$ of Xh axis in left hand. Dominant hand-arm vibration level of oil-pulse impact wrenches in each hand was $2.59m/sec^2$ of Xh axis in right hand and $3.23m/sec^2$ of Yh axis in left hand. 4. In double-hammer impact wrenches, corresponding hand-arm vibration levels of Xh, Yh, Zh axis in left hand were higher than hand-arm vibration levels of right hand in 3 axis. In oil-pulse impact wrenches, Xh axis of right, Yh axis of left, Zh axis of left were higher than the corresponding hand-arm vibration levels of Xh, Yh, Zh axis in right and left hand. 5. Correlation coefficients among Xh, Yh. Zh axis of right and left hand hand-arm vibration levels in double-hammer impact wrenches and oil-pulse impact wrenches were commonly high in Yh axis and correlation coefficients of Yh axis in double-hammer impact wrenches and oil-pulse impact wrenches were 0.76 and 0.86,respectively. 6. As a measure repetitiveness, plotting total daily exposure time with the number of bolts or nut per cycle, direct correlation was shown between repetitiveness and hand-arn vibration exposure, and correlation coefficient between the number of bolts or nut per cycle and total daily exposure time in double-hammer impact wrenches, oil-pulse impact wrenches were 0.84 and 0.50, respectively. 7. Considering the total acceleration level and tool variables in double-hammer impact wrenches and oil-pulse impact wrenches, air consumption in right hand, and bolt or nut capacity in left hand were commonly the variable that explainability was high. Considering the noise and tool variables in double-hammer impact wrenches and oil-pulse impact wrenches, air consumption per minute was commonly the variable that explainability was high.

  • PDF