• Title/Summary/Keyword: Time Series Forecasting

Search Result 597, Processing Time 0.024 seconds

A Study of Short Term Forecasting of Daily Water Demand Using SSA (SSA를 이용한 일 단위 물수요량 단기 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.758-769
    • /
    • 2004
  • The trends and seasonalities of most time series have a large variability. The result of the Singular Spectrum Analysis(SSA) processing is a decomposition of the time series into several components, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, forecasting by the SSA method should be applied to time series governed (may be approximately) by linear recurrent formulae(LRF). This study examined forecasting ability of SSA-LRF model. These methods are applied to daily water demand data. These models indicate that most cases have good ability of forecasting to some extent by considering statistical and visual assessment, in particular forecasting validity shows good results during 15 days.

Forecast of Influent Characteristics in Wastewater Treatment Plant with Time Series Model (시계열모델을 이용한 하수처리장 유입수 성상 예측)

  • Kim, Byung-Goon;Moon, Yong-Taik;Kim, Hong-Suck;Kim, Jong-Rack
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.701-707
    • /
    • 2007
  • The information on the incoming load to wastewater treatment plants is not often available to apply to evaluate effects of control actions on the field plant. In this study, a time series model was developed to forecast influent flow rate, BOD, COD, SS, TN and TP concentrations using field operating data. The developed time series model could predict 1 day ahead forecasting results accurately. The coefficient of determination between measured data and 1 day ahead forecasting results has a range from 0.8898 to 0.9971. So, the corelation is relatively high. We made forecasting program based on the time series model developed and hope that the program will assist the operators in the stable operation in wastewater treatment plants.

Time Series Analysis Using Neural Networks : Forecasting Performance Analysis with M1-Competition Data (신경망을 이용한 시계열 분석 : M1-Competition Data에 대한 예측성과 분석)

  • 지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.135-148
    • /
    • 1995
  • Neural Networks have been advocated as an alternative to statistical forecasting methods. However, the empirical evidences are not consistent. In the present experiments, multi-layered perceptron (MLP) are adopted as approximator to the time series generating processes. To prevent the MLP from being overfitted to the given time series, the information obtained from ARMA modeling is used to determine the architecture of MLP. The proposed approach was tested empirically using the subsamples of the 111 time series used in the first Markridakis Competition. The forecasting results were analyzed to find out the factors that affect the performance of MLP. The experimental results show that the proposed approach outperforms ARMA models in terms of fitting and forecasting accuracy. In addition, it is found that the use of deseasonalized data improves the forecasting accuracy of MLP.

  • PDF

KOSPI directivity forecasting by time series model (시계열 모형을 이용한 주가지수 방향성 예측)

  • Park, In-Chan;Kwon, O-Jin;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.991-998
    • /
    • 2009
  • This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.

  • PDF

A Study on Centralized Wind Power Forecasting Based on Time Series Models (시계열 모형을 이용한 단기 풍력 단지 출력 지역 통합 예측에 관한 연구)

  • Wi, Young-Min;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.918-922
    • /
    • 2016
  • As the number of wind farms operating has increased, the interest of the central unit commitment and dispatch for wind power has increased as well. Wind power forecast is necessary for effective power system management and operation with high wind power penetrations. This paper presents the centralized wind power forecasting method, which is a forecast to combine all wind farms in the area into one, using time series models. Also, this paper proposes a prediction model modified with wind forecast error compensation. To demonstrate the improvement of wind power forecasting accuracy, the proposed method is compared with persistence model and new reference model which are commonly used as reference in wind power forecasting using Jeju Island data. The results of case studies are presented to show the effectiveness of the proposed wind power forecasting method.

Bayesian Method in Forecasting of time Series (Bayesian 시계열 예측방법에 관한 소고)

  • 박일근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.7 no.10
    • /
    • pp.47-51
    • /
    • 1984
  • In many forecasting problem, there is little or no useful historical information available at the time the initial forecast is required, The propose of this paper is study on Bayesian Method in forecasting. I : Introduction. II : Bayesian estimation. III : Constant Model. IV : General time series Models. V : Conclusion. The Bayesian procedure are then used to revise parameter estimates when time series information is available, in this paper we give a general description of the bayesian approach and demonstrate the methodology with several specific cases.

  • PDF

A Case Study on Crime Prediction using Time Series Models (시계열 모형을 이용한 범죄예측 사례연구)

  • Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.139-169
    • /
    • 2012
  • The purpose of this study is to contribute to establishing the scientific policing policies through deriving the time series models that can forecast the occurrence of major crimes such as murder, robbery, burglary, rape, violence and identifying the occurrence of major crimes using the models. In order to achieve this purpose, there were performed the statistical methods such as Generation of Time Series Model(C) for identifying the forecasting models of time series, Generation of Time Series Model(C) and Sequential Chart of Time Series(N) for identifying the accuracy of the forecasting models of time series on the monthly incidence of major crimes from 2002 to 2010 using IBM PASW(SPSS) 19.0. The following is the result of the study. First, murder, robbery, rape, theft and violence crime's forecasting models of time series are Simple Season, Winters Multiplicative, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0 )(0,1,1) and Simple Season. Second, it is possible to forecast the short-term's occurrence of major crimes such as murder, robbery, burglary, rape, violence using the forecasting models of time series. Based on the result of this study, we have to suggest various forecasting models of time series continuously, and have to concern the long-term forecasting models of time series which is based on the quarterly, yearly incidence of major crimes.

  • PDF

Performance comparison for automatic forecasting functions in R (R에서 자동화 예측 함수에 대한 성능 비교)

  • Oh, Jiu;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.645-655
    • /
    • 2022
  • In this paper, we investigate automatic functions for time series forecasting in R system and compare their performances. For the exponential smoothing models and ARIMA (autoregressive integrated moving average) models, we focus on the representative time series forecasting functions in R: forecast::ets(), forecast::auto.arima(), smooth::es() and smooth::auto.ssarima(). In order to compare their forecast performances, we use M3-Competiti on data consisting of 3,003 time series and adopt 3 accuracy measures. It is confirmed that each of the four automatic forecasting functions has strengths and weaknesses in the flexibility and convenience for time series modeling, forecasting accuracy, and execution time.

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

Short-Term Load Forecasting Using Multiple Time-Series Model Including Dummy Variables (더미변수(Dummy Variable)를 포함하는 다변수 시계열 모델을 이용한 단기부하예측)

  • 이경훈;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.450-456
    • /
    • 2003
  • This paper proposes a multiple time-series model with dummy variables for one-hour ahead load forecasting. We used 11 dummy variables that were classified by day characteristics such as day of the week, holiday, and special holiday. Also, model specification and selection of input variables including dummy variables were made by test statistics such as AIC(Akaike Information Criterion) and t-test statistics of each coefficient. OLS (Ordinary Least Squares) method was used for estimation and forecasting. We found out that model specifications for each hour are not identical usually at 30% of optimal significance level, and dummy variables reduce the forecasting error if they are classified properly. The proposed model has much more accurate estimates in forecasting with less MAPE (Mean Absolute Percentage Error).