• 제목/요약/키워드: Time Series Data Prediction

검색결과 638건 처리시간 0.027초

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • 제54권spc1호
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.

An Object-Based Verification Method for Microscale Weather Analysis Module: Application to a Wind Speed Forecasting Model for the Korean Peninsula (미기상해석모듈 출력물의 정확성에 대한 객체기반 검증법: 한반도 풍속예측모형의 정확성 검증에의 응용)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Sang-il;Choi, Young-Jean
    • The Korean Journal of Applied Statistics
    • /
    • 제28권6호
    • /
    • pp.1275-1288
    • /
    • 2015
  • A microscale weather analysis module (about 1km or less) is a microscale numerical weather prediction model designed for operational forecasting and atmospheric research needs such as radiant energy, thermal energy, and humidity. The accuracy of the module is directly related to the usefulness and quality of real-time microscale weather information service in the metropolitan area. This paper suggests an object based verification method useful for spatio-temporal evaluation of the accuracy of the microscale weather analysis module. The method is a graphical method comprised of three steps that constructs a lattice field of evaluation statistics, merges and identifies objects, and evaluates the accuracy of the module. We develop lattice fields using various evaluation spatio-temporal statistics as well as an efficient object identification algorithm that conducts convolution, masking, and merging operations to the lattice fields. A real data application demonstrates the utility of the verification method.

Analysis of Relative Settlement Behavior of Retaining Wall Backside Ground Using Clustering (군집분류를 이용한 흙막이 벽체 배면 지반의 상대적 침하거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • 제33권1호
    • /
    • pp.189-200
    • /
    • 2023
  • As urbanization and industrialization increase development in downtown areas, damage due to ground settlement continues to occur. Building collapse in urban has a high risk of leading to large-scale damage to life and property. However, there has rarely been studied on measurement data analysis methods when uneven loads are applied to the excavated ground and no prior knowledge of the ground. Accordingly, it was attempted to analyze the relative settlement behavior and correlation by processing the time-series surface settlement of construction sites in the urban. In this paper, the average index of difference in settlement and average of relative difference in settlement are defined and calculated, then plotted in the coordinate system to analyze the relative settlement behavior over time. In addition, since there was no prior knowledge of the ground, a standard to classify the clusters was needed, and the observation points were classified into using k-means clustering and Dunn Index. As a result of the analysis, it was confirmed that all the clusters moved to the stable region as the settlement amount converges. The clusters were segmented. Based on the analysis results, it was possible to distinguish between the independent displacement area and same behavior area by analyzing the correlation between measurement points. If possible to analyze the relative settlement behavior between the stations and classify the behavior areas, it can be helpful in settlement and stability management, such as uplift of the surrounding area, prediction of ground failure area, and prevention of activity failure.

Drought Analysis and Assessment by Using Land Surface Model on South Korea (지표수문해석모형을 활용한 국내 가뭄해석 적용성 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo;Chung, Jun-Seok
    • Journal of Korea Water Resources Association
    • /
    • 제44권8호
    • /
    • pp.667-681
    • /
    • 2011
  • The objective of this study is to evaluate the applicability of a Land Surface Model (LSM) for drought analysis in Korea. For evaluating the applicability of the model, the model was calibrated on several upper dam site watersheds and the hydrological components (runoff and soil moisture) were simulated over the whole South Korea at grid basis. After converting daily series of runoff and soil moisture data to accumulated time series (3, 6, 12 months), drought indices such as SRI and SSI are calculated through frequency analysis and standardization of accumulated probability. For evaluating the drought indices, past drought events are investigated and drought indices including SPI and PDSI are used for comparative analysis. Temporal and spatial analysis of the drought indices in addition to hydrologic component analysis are performed to evaluate the reproducibility of drought severity as well as relieving of drought. It can be concluded that the proposed indices obtained from the LSM model show good performance to reflect the historical drought events for both spatially and temporally. From this point of view, the LSM can be useful for drought management. It leads to the conclusion that these indices are applicable to domestic drought and water management.

Recent Changes in Summer Precipitation Characteristics over South Korea (최근 한반도 여름철 강수특성의 변화)

  • Park, Chang-Yong;Moon, Ja-Yeon;Cha, Eun-Jeong;Yun, Won-Tae;Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • 제43권3호
    • /
    • pp.324-336
    • /
    • 2008
  • This paper examines the recent changes of summer precipitation in the aspect of temporal and spatial features using long-term($1958{\sim}2007$) observed station data over South Korea. tong-term mean summer precipitation has revealed two precipitation peaks during summer(June to September); one is the Changma as the first peak, and the other is the post-Changma as the second peak. During the Changma period, the spatial distribution of the maximum precipitation areas is determined by the prevailing southwesterlies and the quasi-stationary front, which results in large amount of precipitation at the windward side of mountain regions over South Korea. However during the post-Changma period, the spatial distribution of the maximum precipitation areas is determined by the lower tropospheric circulation flows from the west and the southeast around the Korean peninsula, and the weather phenomena such as Typhoons, convective instability, and cyclones which are originated from the Yangtze river. The larger amount of precipitation is founded on the southern coastal region and mountain and coastal areas in Korea during the second peak. Time series of total summer precipitation shows a steady increase and the increasing trend is more obvious during the recent 10 years. Decadal variation in summer precipitation indicates a large increase of precipitation, especially in the recent 10 years both in the Changma and the post-Changma period. However, the magnitude of change and the period of the maximum peak presents remarkable contrasts among stations. The most distinct decadal change occurs at Seoul, Busan, and Gangnueng. The precipitation amount is increasing significantly during the post-Changma period at Gangnueng, while the precipitation increases in the period between two maximum precipitation peaks during summer at Seoul and Busan.

Analysis of Global Shipping Market Status and Forecasting the Container Freight Volume of Busan New port using Time-series Model (글로벌 해운시장 현황 분석 및 시계열 모형을 이용한 부산 신항 컨테이너 물동량 예측에 관한 연구)

  • JO, Jun-Ho;Byon, Je-Seop;Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제10권4호
    • /
    • pp.295-303
    • /
    • 2017
  • In this paper, we analyze the trends of the international shipping market and the domestic and foreign factors of the crisis of the domestic shipping market, and identify the characteristics of the recovery of the Busan New Port trade volume which has decreased since the crisis of the domestic shipping market We quantitatively analyzed the future volume of Busan New Port and analyzed the trends of the prediction and recovery trends. As a result of analyzing Busan New Port container cargo volume by using big data analysis tool R, the variation of Busan New Cargo container cargo volume was estimated by ARIMA model (1,0,1) (1,0,1)[12] Estimation error, AICc and BIC were the most optimal ARIMA models. Therefore, we estimated the estimated value of Busan New Port trade for 36 months by using ARIMA (1, 0, 1)[12], which is the optimal model of Busan New Port trade, and estimated 13,157,184 TEU, 13,418,123 TEU, 13,539,884 TEU, and 4,526,406 TEU, respectively, indicating that it increased by about 2%, 2%, and 1%.

Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA (HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가)

  • Byon, Jae-Young;Kim, Tae-Jun;Kim, Jin-Uk;Kim, Do-Hyun
    • Journal of the Korean earth science society
    • /
    • 제43권3호
    • /
    • pp.367-385
    • /
    • 2022
  • This study evaluates the temperature and precipitation results in East Asia simulated from the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) developed by the UK Met Office. The HadGEM3-RA is conducted in the Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II domain for 15 year (2000-2014). The spatial distribution of rainbands produced from the HadGEM3-RA by the summer monsoon is in good agreement with the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APRODITE) data over the East Asia. But, precipitation amount is overestimated in Southeast Asia and underestimated over the Korean Peninsula. In particular, the simulated summer rainfall and APRODITE data show the least correlation coefficient and the maximum value of root mean square error in South Korea. Prediction of temperature in Southeast Asia shows underestimation with a maximum error during winter season, while it appears the largest underestimation in South Korea during spring season. In order to evaluate local predictability, the time series of temperature and precipitation compared to the ASOS data of the Seoul Meteorological Station is similar to the spatial average verification results in which the summer precipitation and winter temperature underestimate. Especially, the underestimation of the rainfall increases when the amounts of precipitation increase in summer. The winter temperature tends to underestimate at low temperature, while it overestimates at high temperature. The results of the extreme climate index comparison show that heat wave is overestimated and heavy rainfall is underestimated. The HadGEM3-RA simulated with a horizontal resolution of 25 km shows limitations in the prediction of mesoscale convective system and topographic precipitation. This study indicates that improvement of initial data, horizontal resolution, and physical process are necessary to improve predictability of regional climate model.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제23권2호
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • 제23권3호
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • 제39권6_1호
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.