• 제목/요약/키워드: Time Phase

검색결과 8,415건 처리시간 0.033초

단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측 (Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method)

  • 성재용;박상민;유정열
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

에탄올에 의한 TMA- 포접화합물의 과냉각 개선에 대한 연구 (A Study on the Supercooling Improvement of TMA -Clathrate Compound by Ethanol)

  • 김진흥;정낙규;김창오
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.392-397
    • /
    • 2005
  • This study is investigated the supercooling improvement and the phase change temperature of the TMA clathrate compound including TMA(Tri-Methyl-Amine, ($(CH_3)_3N$) of 25 wt% with additive as a low temperature storage material at $6^{\circ}C$ and $-7^{\circ}C$ of heat source. The additive is ethanol of 0.1, 0.3 wt% and 0.5 wt%. The results showed that as the concentration of ethanol is increased, the phase change temperature, the degree of supercooling and the retention time of liquid phase are decreased. Especially, TMA 25 wt% clathrate compound with ethanol of 0.5wt% has the average of phase change temperature of $3.8^{\circ}C$, degree of supercooling of $0.9^{\circ}C$, $0.8^{\circ}C$ and retention time of liquid phase for 6, 5 minutes at $-6^{\circ}C$, $-7^{\circ}C$ of heat source. From the results of this study, TMA 25wt% clathrate compound with ethanol 0.5wt% showed supercooling repression effect.

  • PDF

4원타깃 RF마그네트론 스퍼터링법을 이용한 Bi계 고온 초전도체 박막의 제작 (Fabrication of Bi-based High-Tc superconducting thin films by 4-target RF magnetron sputtering methods)

  • 이현수;강형곤;임성훈;한병성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권9호
    • /
    • pp.869-875
    • /
    • 1997
  • Bi based superconducting thin films were fabricated by 4-target RF magnetron sputtering using the method of controlling the on-off time. These thin films showed better crystal structures. The ratio of Cu/Bi decreased but the critical temperature increased with increasing the temperature of the substrate. High temperature phase low temperature of the substrate. High temperature phase low temperature phase and semiconducting phase can be formed by controlling the on-off time of the shutter respectively.

  • PDF

Non-data Aided Timing Phase Recovery Scheme for Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion

  • Park, Jang-Woo;Chung, Won-Zoo;Park, Jong-Sun;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.367-372
    • /
    • 2009
  • In this paper we propose an electronic domain timing phase selection scheme for the optical communication systems suffering from inter-symbol-interference (ISI) distortion due to chromatic dispersion (CD) or polarization mode dispersion (PMD). In the presence of CD/PMD a proper timing phase selection is important for discrete time domain equalizers, since different timing phases produce different nonlinear ISI channels of different severity. The proposed timing phase recovery scheme based on dispersion minimization (DM) practically approximates the optimal minimum mean squared error (MMSE) timing phase without training signals which reduces overall throughput substantially, especially in time-varying channels such as PMD. The simulation results show that the proposed DM timing agrees with MMSE timing phase, under proper normalization of the received signals, for various dispersion and OSNR.

A Current Compensating Scheme for Improving Phase Noise Characteristic in Phase Locked Loop

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.139-142
    • /
    • 2018
  • This work presents a novel architecture of phase locked loop (PLL) with the current compensating scheme to improve phase noise characteristic. The proposed PLL has two charge pumps (CP), main-CP (MCP) and sub-CP (SCP). The smaller SCP current with same time duration but opposite direction of UP/DN MCP current is injected to the loop filter (LF). It suppresses the voltage fluctuation of LF. The PLL has a novel voltage controlled oscillator (VCO) consisting of a voltage controlled resistor (VCR) and the three-stage ring oscillator with latch type delay cells. The VCR linearly converts voltage into current, and the latch type delay cell has short active on-time of transistors. As a result, it improves phase noise characteristic. The proposed PLL has been fabricated with $0.35{\mu}m$ 3.3 V CMOS process. Measured phase noise at 1 MHz offset is -103 dBc/Hz resulting in 3 dBc/Hz phase noise improvement compared to the conventional PLL.

Trajectory Optimization for Autonomous Berthing of a Twin-Propeller Twin-Rudder Ship

  • Changyu Lee;Jinwhan Kim
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.122-128
    • /
    • 2023
  • Autonomous berthing is a crucial technology for autonomous ships, requiring optimal trajectory planning to prevent collisions and minimize time and control efforts. This paper presents a two-phase, two-point boundary value problem (TPBVP) strategy for creating an optimal berthing trajectory for a twin-propeller, twin-rudder ship with autonomous berthing capabilities. The process is divided into two phases: the approach and the terminal. Tunnel thruster use is limited during the approach but fully employed during the terminal phase. This strategy permits concurrent optimization of the total trajectory duration, individual phase trajectories, and phase transition time. The efficacy of the proposed method is validated through two simulations. The first explores a scenario with phase transition, and the second generates a trajectory relying solely on the approach phase. The results affirm our algorithm's effectiveness in deciding transition necessity, identifying optimal transition timing, and optimizing the trajectory accordingly. The proposed two-phase TPBVP approach holds significant implications for advancements in autonomous ship navigation, enhancing safety and efficiency in berthing operations.

Nonparaxial Imaging Theory for Differential Phase Contrast Imaging

  • Jeongmin Kim
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.537-544
    • /
    • 2023
  • Differential phase contrast (DPC) microscopy, a central quantitative phase imaging (QPI) technique in cell biology, facilitates label-free, real-time monitoring of intrinsic optical phase variations in biological samples. The existing DPC imaging theory, while important for QPI, is grounded in paraxial diffraction theory. However, this theory lacks accuracy when applied to high numerical aperture (NA) systems that are vital for high-resolution cellular studies. To tackle this limitation, we have, for the first time, formulated a nonparaxial DPC imaging equation with a transmission cross-coefficient (TCC) for high NA DPC microscopy. Our theoretical framework incorporates the apodization of the high NA objective lens, nonparaxial light propagation, and the angular distribution of source intensity or detector sensitivity. Thus, our TCC model deviates significantly from traditional paraxial TCCs, influenced by both NA and the angular variation of illumination or detection. Our nonparaxial imaging theory could enhance phase retrieval accuracy in QPI based on high NA DPC imaging.

The Optimization of Scan Timing for Contrast-Enhanced Magnetic Resonance Angiography

  • Jongmin J. Lee;Phillip J. Tirman;Yongmin Chang;Hun-Kyu Ryeom;Sang-Kwon Lee;Yong-Sun Kim;Duk-Sik Kang
    • Korean Journal of Radiology
    • /
    • 제1권3호
    • /
    • pp.142-151
    • /
    • 2000
  • Objective: To determine the optimal scan timing for contrast-enhanced magnetic resonance angiography and to evaluate a new timing method based on the arteriovenous circulation time. Materials and Methods: Eighty-nine contrast-enhanced magnetic resonance angiographic examinations were performed mainly in the extremities. A 1.5T scanner with a 3-D turbo-FLASH sequence was used, and during each study, two consecutive arterial phases and one venous phase were acquired. Scan delay time was calculated from the time-intensity curve by the traditional (n = 48) and/or the new (n = 41) method. This latter was based on arteriovenous circulation time rather than peak arterial enhancement time, as used in the traditional method. The numbers of first-phase images showing a properly enhanced arterial phase were compared between the two methods. Results: Mean scan delay time was 5.4 sec longer with the new method than with the traditional. Properly enhanced first-phase images were found in 65% of cases (31/48) using the traditional timing method, and 95% (39/41) using the new method. When cases in which there was mismatch between the target vessel and the time-intensity curve acquisition site are excluded, erroneous acquisition occurred in seven cases with the traditional method, but in none with the new method. Conclusion: The calculation of scan delay time on the basis of arteriovenous circulation time provides better timing for arterial phase acquisition than the traditional method.

  • PDF

초기 슬로우 스타트 단계에서 SCTP의 평균 전송 시간 (Mean Transfer Time for SCTP in Initial Slow Start Phase)

  • 김주현;이용진
    • 대한공업교육학회지
    • /
    • 제32권2호
    • /
    • pp.199-216
    • /
    • 2007
  • SCTP(stream control transmission protocol)는 데이터 전송을 위한 전송 계층 프로토콜로서, 많은 부분에서 TCP(transmission control protocol) 방식을 따른다. 하지만 멀티 호밍(multi-homing)과 멀티 스트리밍(multi-streaming)의 특징을 가짐으로 성능의 차이를 갖는다. 이 논문에서는 SCTP 혼잡제어 중에서 초기 슬로우 스타트 단계에 초점을 맞추어 데이터 전송을 분석하고, 대역폭, 지연시간 및 데이터 크기에 따른 SCTP와 TCP 평균 전송 시간을 측정하고 비교하였다. 아울러 SCTP와 TCP의 평균 전송시간에 영향을 미치는 요인인 초기 윈도우 크기를 데이터 크기에 따라 측정하였다. 실험을 위한 서버와 클라이언트 프로그램은 SCTP socket API를 이용하여 C 언어로 작성되었고, 전송 시간은 이더리얼 프로그램을 사용하여 측정되었다. 서버와 클라이언트 사이의 데이터 전송 방법은 라운드 로빈(round robin) 방법을 사용하였다. 실험 결과, SCTP는 초기 슬로우 스타트 단계에서 TCP 보다 평균 전송 시간에 있어 약 15% 정도 향상된 성능을 보였으며, 그 이유는 SCTP 초기 윈도우 크기가 TCP 보다 크기 때문으로 확인되었다.

Comparison of Skiing Time and Vertical Ground Reaction Force between the Short Turn and Basic Parallel Turn during Alpine Skiing

  • Kim, Jin-Hae;Kim, Joo-Nyeon
    • 한국운동역학회지
    • /
    • 제27권4호
    • /
    • pp.257-262
    • /
    • 2017
  • Objective: This study aimed to investigate the differences in skiing time and vertical ground reaction force (vGRF) between the basic parallel turn and short turn. Method: Eleven alpine ski instructors (age: $28.73{\pm}4.29yrs$, height: $172.36{\pm}6.30cm$, body mass: $71.45{\pm}9.16kg$, career: $11.09{\pm}2.70yrs$) participated in this study. Each skier was asked to perform a basic parallel turn and short turn on a $16^{\circ}$ groomed slope. A foot pressure measurement system was used to measure the skiing time and vGRF under the three plantar regions (forefoot, midfoot, rearfoot). Results: Skiing time decreased significantly in all three phases during the short turn (p<.05). In the initiation phase, the vGRF showed a greater decrease on the midfoot and rearfoot during the short turn (p<.05). In the steering phase 1, the vGRF showed a greater increase on the forefoot and decreased on the midfoot during the short turn (p<.05). In the steering phase 2, the vGRF showed a greater increase on the forefoot and rearfoot during the short turn (p<.05). Conclusion: Our findings proved that the skiing time and vGRF changed during the short turn. Consequently, we suggest that recreational skiers should decrease the skiing time of the steering phase compared to that of the initiation phase and increase the vGRF on the forefoot and rearfoot in the steering phase.