• 제목/요약/키워드: Time Domain Noise

검색결과 594건 처리시간 0.026초

Null 부반송파를 갖는 OFDM 시스템에서 단순화된 시간영역 채널 추적 방식 (A Simplified Time Domain Channel Tracking Scheme in OFDM Systems with Null Sub-Carriers)

  • 전형구
    • 한국통신학회논문지
    • /
    • 제32권4C호
    • /
    • pp.418-424
    • /
    • 2007
  • 본 논문에서는 null 부반송파를 갖는 OFDM 시스템에서 단순화된 시간 영역 채널 추적(tracking) 방식을 제안하였다. 제안된 채널 추적 방식은 결정 귀환된 데이터를 이용하여 간단한 주파수 영역 채널 추정을 먼저 수행함으로써 시간 영역 채널 추정을 간략화한 방식이다. 제안된 방식은 기존의 시간영역 채널 추정 방식 보다 계산량 면에서 약 93% 정도 감소한다. 본 논문에서 성능 분석은 추정된 채널 응답의 MSE 성능과 수신기의 BER 성능면에서 이루어졌다. 시뮬레이션 결과 제안된 방식은 줄어든 계산량에도 불구하고 기존의 시간 영역 채널 추적 방식과 동일한 성능을 보였다.

SPEECH ENHANCEMENT BY FREQUENCY-WEIGHTED BLOCK LMS ALGORITHM

  • Cho, D.H.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1985년도 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1985
  • In this paper, enhancement of speech corrupted by additive white or colored noise is stuided. The nuconstrained frequency-domain block least-mean-square (UFBLMS) adaptation algorithm and its frequency-weighted version are newly applied to speech enhancement. For enhancement of speech degraded by white noise, the performance of the UFBLMS algorithm is superior to the spectral subtraction method or Wiener filtering technique by more than 3 dB in segmented frequency-weighted signal-to-noise ratio(FWSNERSEG) when SNR of speech is in the range of 0 to 10 dB. As for enhancement of noisy speech corrupted by colored noise, the UFBLMS algorithm is superior to that of the spectral subtraction method by about 3 to 5 dB in FWSNRSEG. Also, it yields better performance by about 2 dB in FWSNR and FWSNRSEG than that of time-domain least-mean-square (TLMS) adaptive prediction filter(APF). In view of the computational complexity and performance improvement in speech quality and intelligibility, the frequency-weighted UFBLMS algorithm appears to yield the best performance among various algorithms in enhancing noisy speech corrupted by white or colored noise.

  • PDF

주파수영역방법에 의한 비선형 모델변수의 실험적 규명 (Experimental identification of nonlinear model parameter by frequency domain method)

  • 김원진
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.

Robustness of 2nd-order Iterative Learning Control for a Class of Discrete-Time Dynamic Systems

  • 김용태
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.363-368
    • /
    • 2004
  • In this paper, the robustness property of 2nd-order iterative learning control(ILC) method for a class of linear and nonlinear discrete-time dynamic systems is studied. 2nd-order ILC method has the PD-type learning algorithm based on both time-domain performance and iteration-domain performance. It is proved that the 2nd-order ILC method has robustness in the presence of state disturbances, measurement noise and initial state error. In the absence of state disturbances, measurement noise and initialization error, the convergence of the 2nd-order ILC algorithm is guaranteed. A numerical example is given to show the robustness and convergence property according to the learning parameters.

Hypersonic Panel Flutter Analysis Using Coupled CFD-CSD Method

  • ;김동현;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.171-177
    • /
    • 2011
  • In this paper, a square simply supported panel flutter have been considered at high supersonic flow by using coupled fluid-structure (FSI) analysis that based on time domain method. The Reynolds-Average Navier Stokes (RANS) equation with Spalart-Allmaras turbulent model were applied for unsteady flow problems of panel flutter. A fully implicit time marching schemed based on the Newmark direct integration method is used for calculating the coupled aeroelastic governing equations of it. In addition, the SOL 145 solver of MSC.NASTRAN was used to investigate flutter velocity based on PK-method of Piston theory. Our numerical results indicated that there is a good agreement result between Piston Theory in MSC.NASTRAN and coupled fluid-structure analysis.

  • PDF

동시 사용자의 간섭을 제거한 광 주파수 및 시간 영역 광 CDMA를 이용한 광 가입자 망의 제안 (Proposal of optical subscriber access network to eliminate multiple access interference using 2 dimensional optical frequency and time domain CDMA method)

  • 박상조;김봉규
    • 정보처리학회논문지C
    • /
    • 제13C권2호
    • /
    • pp.161-166
    • /
    • 2006
  • 무선통신에 널리 사용되는 PN(Pseudorandom Noise) 부호를 사용하여 생성 부호 수를 증가시키고 양극성 상관 수신기에서 가입자간 간섭잡음을 완전히 제거할 수 있는 2D 광 CDMA 방식을 사용한 광 가입자 망을 제안한다. 제안 시스템에서 특성을 수치적으로 분석한 결과 EIN(Excess Intensity Noise) 잡음이 지배적인 잡음전력인 것을 알 수 있다. 그리고 제안한 2D 광 CDMA 시스템에서 동시 사용 가능한 가입자의 수가 동일 성능조건하에 종래의 ID 광 CDMA 시스템보다 4배 향상된 것을 알 수 있다.

시간 영역의 빔출력과 후보 신호 사이의 비교를 통한 소음원의 위치 추정 (Noise source localization using comparison between candidate signal and beamformer output in time domain)

  • 김구환;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.543-543
    • /
    • 2010
  • The objective of this research is estimating the location of interested sound source by using the similarity between a beamformer output in time domain and the candidate signal. The waveform of beamformer output at the location of sound source is similar with the waveform emitted by that source. To estimate the location of sound source by using this feature, we define quantified similarity between candidate signal and beamformer output. The candidate signal describes the signal which is generated by interested source. In this paper, similarity is defined by four methods. The two methods use time vector comparison, and the other two methods use time-frequency map or linear prediction coefficients. To figure out the results and performance of localization by using similarities, we demonstrate two conditions. The one is when two pure tone sources exist and the other condition is when several bird sounds exist. As a consequence, inner product with two time-vectors and structural similarity with spectrograms can estimate the locations of interest sound source.

  • PDF

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석 (Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain)

  • 김상환;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

수중 프로펠러의 소음 예측에 관한 연구(Part 1. 비공동 소음) (Numerical Analysis of Underwater Propeller Noise(Part 1. Non-Cavitating Noise))

  • 설한신;이수갑;표상우;서정천
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.21-32
    • /
    • 2004
  • The non-cavitating noise of underwater propeller is considered numerically in this study. The main purpose is to analyze non-cavitating noise from underwater propellers in various operating conditions with different configurations. Noise is predicted by using time-domain acoustic analogy, boundary element method, and computational hydro-acoustics. The flow field is analyzed with potential-based panel method, and then time-dependant pressure data are used as the input for Focus Williams-Hawkings formulation to predict far field acoustics. Furthermore, boundary element method and computational hydro-acoustics are also considered to investigate duct propeller and ducted multi-stage propeller to consider the reflection and diffraction of sound waves. With this methodology, noise intensity and directivity of each noise sources could be well analyzed.