• Title/Summary/Keyword: Time Domain Characterization

Search Result 82, Processing Time 0.027 seconds

Analysis of Symmetric Coupled Line with Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media (다양한 매질내의 손실특성 개선을 위한 크로스바 구조의 대칭 결합선로에 대한 해석)

  • Kim, Yoon-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.61-67
    • /
    • 2010
  • A characterization procedure for analyzing symmetric coupled MIS(Metal-Insulator-Semiconductor) transmission line is used the same procedure as a general single layer symmetric coupled line with perfect dielectric substrate from the extraction of the characteristic impedance and propagation constant for even- and odd-mode. In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Symmetric coupled MIS transmission line parameters for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials (FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용)

  • Im, Kwang-Hee;Hsu, David K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

Analysis of A New Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media (다양한 손실매질내의 손실특성 개선을 위한 새로운 크로스바 구조의 해석)

  • Kim, Yoon-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.83-88
    • /
    • 2006
  • In this paper, we propose a new cross bar embedded structure for improvement of attenuation characteristics along the different lossy media. A general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line used and an analysis for a new substrate shielding MIS structure consisting of grounded crossbars at the interface between Si and Sio2 layer using the Finite-Difference Time-Domain(FDTD) technique is used. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted, distributed frequency-dependent transmission line parameters as well as the line voltages and currents, and also corresponding equivalent circuit parameters have been examined as function of frequency. It is shown that the quality factor of the transmission line can be improved without significant changes in the characteristic impedance and effective dielectric constant.

Classification and Expression Profiling of Putative R2R3 MYB Genes in Rice

  • Kim, Bong-Gyu;Ko, Jae-Hyung;Min, Shin-Young;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • MYB genes, comprising group of related genes found in animal, plant, and fungal genomes, encode common DNA-binding domains composed of one to four repeat motifs. MYB genes containing two repeats (R2R3) constitute largest MYB gene family in plants. R2R3 MYB genes play important roles in regulation of secondary metabolism, control of cell shape, disease resistance, and hormone response. Eight-four R2R3 MYB genes were retrieved from rice genome for functional characterization of MYB genes. Analysis of MYB domains revealed each MYB domain contains three ${\alpha}$-helices with regularly spaced tryptophan residues. R2R3 MYB genes were divided into four subfamilies based on phylogenic analysis result. Real-time PCR analysis of 34 MYB genes revealed 12 MYB genes were highly expressed in seeds than in leaves, whereas 4 genes were highly expressed in leaves.

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

Spectroscopic Characterization of 400℃ Annealed ZnxCd1-xS Thin Films (400℃ 열처리한 삼원화합물 ZnxCd1-xS 박막의 분광학적 특성 연구)

  • Kang, Kwang-Yong;Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Jeong-Ju;Yu, Yun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • II~VI compound semiconductors, $Zn_xCd_{1-x}S$ thin films have been synthesized onto indium-tin-oxide(ITO) coated glass substrates using thermal evaporation technique. The composition ratio x($0{\leq}x{\leq}1$) was varied to fabricate different kinds of $Zn_xCd_{1-x}S$ thin films including CdS(x=0) and ZnS(x=1) thin films. Then, the deposited thin films were thermally annealed at $400^{\circ}C$ to enhance their crystallinity. The chemical composition and electronic structure of films were investigated by using X-ray photoelectron spectroscopy(XPS). The optical energy gaps of the samples were determined by ultra violet-visible-near infrared(UV-Vis-NIR) spectroscopy and were found to vary in the range of 2.44 to 3.98 eV when x changes from 0 to 1. Finally, we measured the THz characteristics of the $Zn_xCd_{1-x}S$ thin films using THz-TDS(time domain spectroscopy) system to identify the capability for electronic and optical devices in THz region.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

Sequence Analysis and Molecular Characterization of Wnt4 Gene in Metacestodes of Taenia solium

  • Hou, Junling;Luo, Xuenong;Wang, Shuai;Yin, Cai;Zhang, Shaohua;Zhu, Xueliang;Dou, Yongxi;Cai, Xuepeng
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.2
    • /
    • pp.163-168
    • /
    • 2014
  • Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.

Ultrasonic Characterization of a Resonating High-Speed Microcantilever (초음파 기법을 이용한 고속 마이크로 캔틸레버의 공진 특성평가)

  • Kim, Yun Young;Lee, Seonwook;Park, Jiwon;Cho, Younho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.483-489
    • /
    • 2017
  • An ultrasonic technique was developed to characterize the resonance behavior of a microcantilever operating in a megahertz regime. A high-power ultrasonic pulser and a contact transducer were employed to excite the silicon microcantilever, and a Michelson interferometer was used to obtain the time domain waveform. The natural frequency of the microcantilever was evaluated through the fast Fourier transform of the signal, and a numerical analysis using the finite element method confirmed the measurement data. The present study proposes a novel and facile method to evaluate nanoscale materials and structures with high sensitivity compared to conventional approaches.

Cloning and Characterization of Bombyx mori Cyclophilin A

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Kwon, O-Yu;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • Cyclophilins are originally identified as cytosolic binding protein of the immunosuppressive drug cyclosporine A. They have an activity of peptidyl prolyl cis/trans-isomerases (PPIase), which may play important roles in protein folding, trafficking, assembly and cell signaling. In this study, we report the cloning and characterization of a Bombyx mori cyclophilin A (bCypA) cDNA. The full-length cDNA of bCypA consist of 947 nucleotides with a polyadenylation signal sequence AATAAA and contain an open reading frame of 498 nucleotides encoding a polypeptide of 166 amino acids. The deduced amino acid sequence of bCypA shares a central peptidyl prolyl cis/trans-isomerase and a cyclosporin-A-binding domain with other cyclophilin sequences. Relative quantification real-time (RT) PCR analysis shows that mRNA transcripts of bCypA are detected in all the investigated tissues and highest expression level in the skin of 3-day-old 5 instar larva. Also, bCypA had PPIase activity on the proline-containing peptides. Accordingly, we suggest that bCypA is a new member of the cyclophilin A (CyPA) family and will be useful for quality control of bioactivity recombinant proteins with proline-containing peptides.