• Title/Summary/Keyword: Time Division Duplexing

Search Result 37, Processing Time 0.025 seconds

Frame Synchronization for Mobile WiMAX Femtocells Using IEEE802.11 Based Wireless Backhaul (IEEE 802.11 기반의 무선 백홀을 사용하는 Mobile WiMAX 펨토셀을 위한 프레임 동기화 기법)

  • Choi, Ji-Hoon;Oh, Hyuk-Jun;Yun, Jae-Yeun;Ko, Hyun-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.667-679
    • /
    • 2010
  • The use of femtocells in buildings and homes has been widely studied as a means to enlarge the cell coverage and increase the network capacity of mobile communication systems. Femtocells for Mobile WiMAX (M-WiMAX) using time division duplexing (TDD) requires frame synchronization with neighboring base stations to avoid interference between uplink and downlink signals. In this paper, we propose a new frame synchronization method for femtocell using IEEE 802.11 based wireless backhaul, which transfers the time information of mobile network to femtocells via the beacon signal provided by IEEE 802.11. Also, in order to reduce timing error of the proposed method, we modify the collision avoidance scheme in the transmitter of IEEE 802.11 and apply a timing estimation technique designed in the sense of least squares to the receiver of IEEE 802.11. Through computer simulations using the proposed scheme, we evaluate the performance of frame synchronization for femtocells and show that the recovered timing information satisfies the timing specification defined by M-WiMAX standard.

Joint User Scheduling and Power Control Considering Both Signal and Interference for Multi-Cell Networks (다중 셀 상향링크 네트워크에서 신호와 간섭을 동시에 고려하는 전력 제어 및 사용자 스케쥴링)

  • Cho, Moon-Je;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.477-483
    • /
    • 2016
  • In this paper, we propose a distributed user scheduling with interference-aware power control (IAPC) to maximize signal to generating interference plus noise ratio (SGINR) in uplink multi-cell networks. Assuming that the channel reciprocity time-division duplexing (TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. In the proposed scheduling, to be specific, each user reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest SGINR among users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms. It is worth noting that the proposed technique operates with distributed manner without information exchange among cells. Hence, it can be easily applied to the practical wireless systems like 3GPP LTE without significant modifications of the specification.

A User Scheduling with Interference-Aware Power Control for Multi-Cell MIMO Networks (다중안테나 다중셀 네트워크에서 간섭인지 기반 전력제어 기술을 이용한 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1063-1070
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of generating interference to other base stations (BSs) in multi-cell multi-input multi-output (MIMO) networks. Assuming that the time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user first generates a transmit beamforming vector by using singular value decompositon (SVD) over MIMO channels and reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest effective channel gains among users, which reflects the adjusted power of users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

A Study on the Distributed Scheduling based on SGINR with Interference-Aware Power Control for Uplink Multi-cell Networks (다중셀 상향링크 네트워크에서 전력제어 기술을 이용한 SGINR기반 분산 사용자 스케쥴링에 관한 연구)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.37-39
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with interference-aware power control (IAPC) to maximize signal to generating interference plus noise ratio (SGINR) in multi-cell uplink network. Assuming that the channel reciprocity time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest SGINR among users. Simulation results show that the proposed technique significantly outperform the existing user scheduling algorithms.

  • PDF

A Threshold-Based Distributed User Scheduling with Transmit Power Control for Uplink Multi-Cell Networks (다중 셀 상향링크 네트워크에서 송신전력제어를 이용한 임계값 기반 분산 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2607-2612
    • /
    • 2014
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of interference inflicted to other BSs in multi-cell uplink networks. Assuming that the channel reciprocity time-division duplexing(TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. The amount of generating interference to other BSs will be calculated at each user. Especially, in this paper, we propose the threshold-based transmit power control, in which a user decrease its transmit power if its generating interference to other BSs is larger than a predetermined threshold. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

A Novel Distributed Secret Key Extraction Technique for Wireless Network (무선 네트워크를 위한 분산형 비밀 키 추출 방식)

  • Im, Sanghun;Jeon, Hyungsuk;Ha, Jeongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.708-717
    • /
    • 2014
  • In this paper, we present a secret key distribution protocol without resorting to a key management infrastructure targeting at providing a low-complexity distributed solution to wireless network. The proposed scheme extracts a secret key from the random fluctuation of wireless channels. By exploiting time division duplexing transmission, two legitimate users, Alice and Bob can have highly correlated channel gains due to channel reciprocity, and a pair of random bit sequences can be generated by quantizing the channel gains. We propose a novel adaptive quantization scheme that adjusts quantization thresholds according to channel variations and reduces the mismatch probability between generated bit sequences by Alice and Bob. BCH codes, as a low-complexity and pratical approach, are also employed to correct the mismatches between the pair of bit sequences and produce a secret key shared by Alice and Bob. To maximize the secret key extraction rate, the parameters, quantization levels and code rates of BCH codes are jointly optimized.

Design and Implementation of 5G mmWave LTE-TDD HD Video Streaming System for USRP RIO SDR (USRP RIO SDR을 이용한 5G 밀리미터파 LTE-TDD HD 비디오 스트리밍 시스템 설계 및 구현)

  • Gwag, Gyoung-Hun;Shin, Bong-Deug;Park, Dong-Wook;Eo, Yun-Seong;Oh, Hyuk-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • This paper presents the implementation and design of the 1T-1R wireless HD video streaming systems over 28 GHz mmWave frequency using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system uses USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transceived from USRP RIO up or down converts to 28 GHz by using self-designed 28 GHz RF transceiver modules and it is finally communicated HD video data through self-designed $4{\times}8$ sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express ${\times}4$ to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 25.85 dBc and to transceive HD video in experiment environment anywhere.