• Title/Summary/Keyword: Time Delayed and Integration

Search Result 25, Processing Time 0.02 seconds

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

Economic optimization and dynamic analysis of nanocomposite shell conveying viscous fluid exposed to the moving load based on DQ-IQ method

  • Ali Chen;Omidreza Masoudian;Gholamreza Soleimani Jafari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.567-581
    • /
    • 2024
  • In this paper, an effort is made to present a detailed analysis of dynamic behavior of functionally graded carbon nanotube-reinforced pipes under the influence of an accelerating moving load. Again, the material properties of the nanocomposite pipe will be determined by following the rule of mixtures, considering a specific distribution and volume fraction of CNTs within the pipe. In the present study, temperature-dependent material properties have been considered. The Navier-Stokes equations are used to determine the radial force developed by the viscous fluid. The structural analysis has been carried out based on Reddy's higher-order shear deformation shell theory. The equations of motion are derived using Hamilton's principle. The resulting differential equations are solved using the Differential Quadrature and Integral Quadrature methods, while the dynamic responses are computed with the use of Newmark's time integration scheme. These are many parameters, ranging from those connected with boundary conditions to nanotube geometrical characteristics, velocity, and acceleration of the moving load, and, last but not least, volume fraction and distribution pattern of CNTs. The results indicate that any increase in the volume fraction of CNTs will lead to a decrease in the transient deflection of the structure. It is also observed that maximum displacement occurs with an increase in the load speed, slightly delayed compared to decelerating motion.

Palliative Care for Adult Patients Undergoing Hemodialysis in Asia: Challenges and Opportunities

  • Wei-Min Chu;Hung-Bin Tsai;Yu-Chi Chen;Kuan-Yu Hung;Shao-Yi Cheng;Cheng-Pei Lin
    • Journal of Hospice and Palliative Care
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • This article underscores the importance of integrating comprehensive palliative care for noncancer patients who are undergoing hemodialysis, with an emphasis on the aging populations in Asian nations such as Taiwan, Japan, the Republic of Korea, and China. As the global demographic landscape shifts towards an aging society and healthcare continues to advance, a marked increase has been observed in patients undergoing hemodialysis who require palliative care. This necessitates an immediate paradigm shift to incorporate this care, addressing the intricate physical, psychosocial, and spiritual challenges faced by these individuals and their families. Numerous challenges impede the provision of effective palliative care, including difficulties in prognosis, delayed referrals, cultural misconceptions, lack of clinician confidence, and insufficient collaboration among healthcare professionals. The article proposes potential solutions, such as targeted training for clinicians, the use of telemedicine to facilitate shared decision-making, and the introduction of time-limited trials for dialysis to overcome these obstacles. The integration of palliative care into routine renal treatment and the promotion of transparent communication among healthcare professionals represent key strategies to enhance the quality of life and end-of-life care for people on hemodialysis. By embracing innovative strategies and fostering collaboration, healthcare providers can deliver more patient-centered, holistic care that meets the complex needs of seriously ill patients within an aging population undergoing hemodialysis.

A Study of Postural Control Characteristics in Schoolchild with Intellectual Disability (초등학교 지적장애아동의 자세조절 특성)

  • Lee, Hyoung Soo
    • 재활복지
    • /
    • v.14 no.3
    • /
    • pp.225-256
    • /
    • 2010
  • This study aims to provide the basic data of the rehabilitation program for the schoolchild with intellectual disability by designing new framework of the features of postural control for the schoolchild with intellectual disability. For this, the study investigated what sensations the schoolchild are using to maintain posture by selectively or synthetically applying vision, vestibular sensation and somato-sensation, and how the coordinative sensory system of the schoolchild is responding to any sway referenced sensory stimulus. The study intended to prove the limitation of motor system in estimating the postural stability by providing the cognitive motor task, and provided the features of postural control of the schoolchild with intellectual disability by measuring the onset times and orders of muscle contraction of neuron-muscle when there is a postural control taking place due to the exterior disturbance. Furthermore, by comparatively analyzing the difference between the normal schoolchild and the intellectually disabled schoolchild, this study provided an optimal direction for treatment planning when the rehabilitation program is applied in the postural control ability training program for the schoolchild with intellectual disability. Taking gender and age into consideration, 52 schoolchild including 26 normal schoolchild and 26 intellectually disabled schoolchild were selected. To measure the features of postural control, CTSIB test, and postural control strategy test were conducted. The result of experiment is as followed. First, the schoolchild with intellectual disability showed different feature in using sensory system to control posture. The normal schoolchild tended to depend on somato-sensory or vision, and showed a stable postural control toward a sway referenced stimulus on somato-sensory system. The schoolchild with intellectual disability tended to use somato-sensory or vision, and showed a very instable postural control toward a sway referenced vision or a sway referenced stimulus on somato-sensory system. In sensory analysis, the schoolchild with intellectual disability showed lower level of proficiency in somato-sensation percentile, vision percentile and vestibular sensation percentile compare to the normal schoolchild. Second, as for the onset times and orders of muscle contraction for strategies of postural control when there is an exterior physical stimulus, the schoolchild with intellectual disability showed a relatively delayed onset time of muscle control, and it was specially greater when the perturbation is from backward. As for the onset orders of muscle contraction, it started from muscles near coax then moved to the muscles near ankle joint, and the numbers and kinds of muscles involved were greater than the normal schoolchild. The normal schoolchild showed a fast muscle contracting reaction from every direction after the perturbation stimulus, and the contraction started from the muscles near the ankle joint and expanded to the muscles near coax. From the results of the experiments, the special feature of the postural control of the schoolchild with intellectual disability is that they have a higher dependence on vision in sensory system, and there was no appropriate integration of swayed sensation observed in upper level of central nerve system. In the motor system, the onset time of muscle contraction for postural control was delayed, and it proceeded in reversed order of the normal schoolchild. Therefore, when use the clinical physical therapy to improve the postural control ability, various sensations should be provided and should train the schoolchild to efficiently use the provided sensations and use the sensory experience recorded in upper level of central nerve system to improve postural control ability. At the same time, a treatment program that can improve the processing ability of central nerve system through meaningful activities with organizing and planning adapting reaction should be provided. Also, a proprioceptive motor control training program that can induce faster muscle contraction reaction and more efficient onset orders from muscularskeletal system is need to be provided as well.

Improvement of Altitude Measurement Algorithm Based on Accelerometer for Holding Drone's Altitude (드론의 고도 유지를 위한 가속도센서 기반 고도 측정 알고리즘 개선)

  • Kim, Deok Yeop;Yun, Bo Ram;Lee, Sunghee;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.473-478
    • /
    • 2017
  • Drones require altitude holding in order to achieve flight objectives. The altitude holding of the drone is to repeat the operation of raising or lowering the drone according to the altitude information being measured in real-time. When the drones are maintained altitude, the drone's altitude will continue to change due to external factors such as imbalance in thrust due to difference in motor speed or wind. Therefore, in order to maintain the altitude of drone, we have to exactly measure the continuously changing altitude of the drone. Generally, the acceleration sensor is used for measuring the height of the drones. In this method, there is a problem that the measured value due to the integration error accumulates, and the drone's vibration is recognized by the altitude change. To solve the difficulty of the altitude measurement, commercial drones and existing studies are used for altitude measurement together with acceleration sensors by adding other sensors. However, most of the additional sensors have a limitation on the measurement distance and when the sensors are used together, the calculation processing of the sensor values increases and the altitude measurement speed is delayed. Therefore, it is necessary to accurately measure the altitude of the drone without considering additional sensors or devices. In this paper, we propose a measurement algorithm that improves general altitude measurement method using acceleration sensor and show that accuracy of altitude holding and altitude measurement is improved as a result of applying this algorithm.