• Title/Summary/Keyword: Time Delay Error

Search Result 635, Processing Time 0.029 seconds

A Study on the Design of Digital Frequency Discriminator with 3-Channel Delay Lines (3채널 지연선을 가진 디지털주파수판별기의 설계에 관한 연구)

  • Kim, Seung-Woo;Choi, Jae-In;Chin, Hui-cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.44-52
    • /
    • 2017
  • In this paper, we propose a DFD (Digital Frequency Discriminator) design that has better frequency discrimination and a smaller size. Electronic warfare equipment can analyze different types of radar signal such as those based on Frequency, Pulse Width, Time Of Arrival, Pulse Amplitude, Angle Of Arrival and Modulation On Pulse. In order for electronic warfare equipment to analyze radar signals with a narrow pulse width (less than 100ns), they need to have a special receiver structure called IFM (Instantaneous Frequency Measurement). The DFD (Digital Frequency Discriminator) is usually used for the IFM. Because the existing DFDs are composed of separate circuit devices, they are bulky, heavy, and expensive. To remedy these shortcomings, we use a three delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$) in the DFD, instead of the four delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$, $64{\lambda}$) generally used in the existing DFDs, and apply the microwave integrated circuit method. To enhance the frequency discrimination, we detect the pulse amplitude and perform temperature correction. The proposed DFD has a frequency discrimination error of less than 1.5MHz, affording it better performance than imported DFDs.

Accuracy Analysis of GNSS-based Public Surveying and Proposal for Work Processes (GNSS관측 공공측량 정확도 분석 및 업무프로세스 제안)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2018
  • Currently, the regulation and rules for public surveying and the UCPs (Unified Control Points) adapts those of the triangulated traverse surveying. In addition, such regulations do not take account of the unique characteristics of GNSS (Global Navigation Satellite System) surveying, thus there are difficulties in field work and data processing afterwards. A detailed procesure of GNSS processing has not yet been described either, and the verification of accuracy does not follow the generic standards. In order to propose an appropriate procedure for field surveys, we processed a short session (30 minutes) based on the scenarios similar to actual situations. The reference network in Seoul was used to process the same data span for 3 days. The temporal variation during the day was evaluated as well. We analyzed the accuracy of the estimated coordinates depending on the parameterization of tropospheric delay, which was compared with the 24-hr static processing results. Estimating the tropospheric delay is advantageous for the accuracy and stability of the coordinates, resulting in about 5 mm and 10 mm of RMSE (Root Mean Squared Error) for horizontal and vertical components, respectively. Based on the test results, we propose a procedure to estimate the daily solution and then combine them to estimate the final solution by applying the minimum constraints (no-net-translation condition). It is necessary to develop a web-based processing system using a high-end softwares. Additionally, it is also required to standardize the ID of the public control points and the UCPs for the automatic GNSS processing.

The Estimation of Link Travel Time for the Namsan Tunnel #1 using Vehicle Detectors (지점검지체계를 이용한 남산1호터널 구간통행시간 추정)

  • Hong Eunjoo;Kim Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • As Advanced Traveler Information System(ATIS) is the kernel of the Intelligent Transportation System, it is very important how to manage data from traffic information collectors on a road and have at borough grip of the travel time's change quickly and exactly for doing its part. Link travel time can be obtained by two method. One is measured by area detection systems and the other is estimated by point detection systems. Measured travel time by area detection systems has the limitation for real time information because it Is calculated by the probe which has already passed through the link. Estimated travel time by point detection systems is calculated by the data on the same time of each. section, this is, it use the characteristic of the various cars of each section to estimate travel time. For this reason, it has the difference with real travel time. In this study, Artificial Neural Networks is used for estimating link travel time concerned about the relationship with vehicle detector data and link travel time. The method of estimating link travel time are classified according to the kind of input data and the Absolute value of error between the estimated and the real are distributed within 5$\~$15minute over 90 percent with the result of testing the method using the vehicle detector data and AVI data of Namsan Tunnel $\#$1. It also reduces Time lag of the information offered time and draws late delay generation and dissolution.

  • PDF

New Worstcase Optimization Method and Process-Variation-Aware Interconnect Worstcase Design Environment (새로운 Worstcase 최적화 방법 및 공정 편차를 고려한 배선의 Worstcase 설계 환경)

  • Jung, Won-Young;Kim, Hyun-Gon;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.80-89
    • /
    • 2006
  • The rapid development of process technology and the introduction of new materials not only make it difficult for process control but also as a result increase process variations. These process variations are barriers to successful implementation of design circuits because there are disparities between data on layout and that on wafer. This paper proposes a new design environment to determine the interconnect worstcase with accuracy and speed so that the interconnect effects due to process-induced variations can be applied to designs of $0.13{\mu}m$ and below. Common Geometry and Maximum Probability methods have been developed and integrated into the new worstcase optimization algorithm. The delay time of the 31-stage Ring Oscillator, manufactured in UMC $0.13{\mu}m$ Logic, was measured, and the results proved the accuracy of the algorithm. When the algorithm was used to optimize worstcase determination, the relative error was less than 1.00%, two times more accurate than the conventional methods. Furthermore, the new worstcase design environment improved optimization speed by 32.01% compared to that of conventional worstcase optimizers. Moreover, the new worstcitse design environment accurately predicted the worstcase of non-normal distribution which conventional methods cannot do well.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

Approximation of a Warship Passive Sonar Signal Using Taylor Expansion (테일러 전개를 이용한 함정 수동 소나 신호 근사)

  • Hong, Wooyoung;Jung, Youngcheol;Lim, Jun-Seok;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.232-237
    • /
    • 2014
  • A passive sonar of warship is composed of several directional or omni-directional sensors. In order to model the acoustic signal received into a warship sonar, the wave propagation modeling is usually required from arbitrary noise source to all sensors equipped to the sonar. However, the full calculation for all sensors is time-consuming and the performance of sonar simulator deteriorates. In this study, we suggest an asymptotic method to estimate the sonar signal arrived to sensors adjacent to the reference sensor, where it is assumed that all information of eigenrays is known. This method is developed using Taylor series for the time delay of eigenray and similar to Fraunhofer and Fresnel approximation for sonar aperture. To validate the proposed method, some numerical experiments are performed for the passive sonar. The approximation when the second-order term is kept is vastly superior. In addition, the error criterion for each approximation is provided with a practical example.

Robust Double Deadbeat Control of Single-Phase UPS Inverter (단상 UPS 인버터의 강인한 2중 데드비트제어)

  • 박지호;허태원;안인모;이현우;정재륜;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2001
  • This paper deals with a novel full digital control of the single-phase PWM(Pulse Width Modulation) inviter for UPS(Uninterruptible Power Supp1y). The voltage and current of output filter capacitor as a state variable are the feedback control input. In the proposed scheme a double deadbeat control consisting of minor current control loop and major voltage control loop have been developed In addition, a second order deadbeat currents control which should be exactly equal to its reference in two sampling time without error and overshoot is proposed to remove the influence of the calculation time delay. The load current prediction is achieved to compensate the load disturbance. The simulation and experimental result shows that the proposed system offers an output voltage with THD(Total Harmonic Distortion) less than 5% at a full nonlinear load.

  • PDF

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

Performance of Turbo Coded OFDM Systems in W-CDMA Wireless Communication Channel (W-CDMA 무선통신 채널에서 터보 부호를 적용한 OFDM 시스템의 성능 분석)

  • Shin, Myung-Sik;Yang, Hae-Sool
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.183-191
    • /
    • 2010
  • In the recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and the iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require a large time delay. Recently methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method of combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion among previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified. Faster decoding is realized that about 1~2 time iterations to reduced through adopting this method into serially concatenated both decoders. System Environments were assumed W-CDMA forward link system with intense MAI (multiple access interference).