• Title/Summary/Keyword: Time Curve Regression

Search Result 151, Processing Time 0.026 seconds

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.

An Empirical Study of the Relationships between CO2 Emissions, Economic Growth and Openness (개방화와 경제성장에 따른 한국, 중국, 일본의 이산화탄소 배출량 비교 분석)

  • Choi, Eunho;Heshmati, Almas;Cho, Yongsung
    • Journal of Environmental Policy
    • /
    • v.10 no.4
    • /
    • pp.3-37
    • /
    • 2011
  • This paper investigates the existence of the environmental Kuznets curve (EKC) for carbon dioxide $CO_2$ emissions and its causal relationships with economic growth and openness by using time series data (1971-2006) from China (an emerging market), Korea (a newly industrialized country), and Japan (a developed country). The sample countries span a whole range of development stages from industrialized to newly industrialized and emerging market economies. The environmental consequences according to openness and economic growth do not show uniform results across the countries. Depending on the national characteristics, the estimated EKC show different temporal patterns. China shows an N-shaped curve while Japan has a U-shaped curve. Such dissimilarities are also found in the relationship between $CO_2$ emissions and openness. In the case of Korea, and Japan it represents an inverted U-shaped curve while China shows a U-shaped curve. We also analyze the dynamic relationships between the variables by adopting a vector auto regression or vector error correction model. These models through the impulse response functions allow for analysis of the causal variable's influence on the dynamic response of emission variables, and it adopts a variance decomposition to explain the magnitude of the forecast error variance determined by the shocks to each of the causal variables over time. Results show evidence of large heterogeneity among the countries and variables impacts.

  • PDF

Rainfall Threshold (ID curve) for Landslide Initiation and Prediction Considering Antecedent Rainfall (선행강우를 고려한 산사태 유발 강우기준(ID curve) 분석)

  • Hong, Moon-Hyun;Kim, Jung-Hwan;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.15-27
    • /
    • 2016
  • This study was conducted to suggest a landslide triggering rainfall threshold (ID curve) for landslide prediction by considering the effect of antecedent rainfall. 202 rainfall data including domestic landslide and rainfall records were used in this study. In order to consider the effect of antecedent rainfall, rainfall data were analyzed by changing Inter Event Time Definition (IETD) and IETD based ID curve were presented by regression analysis. Compared to the findings of the previous studies, the presented ID curve has a tendency to predict the landslides occurring at a relatively low rainfall intensity. It is shown that the proposed ID curve is appropriate and realistic for predicting landslides through the validation of proposed ID curve using records of landslides in 2014. Based on this analysis, it is found that the longer IETD, the greater the effect of antecedent rainfall, and the steeper the gradient of ID curve. It is also found that the rainfall threshold (intensity) is higher for the short period rainfall and lower for the long period rainfall.

Information in the Implied Volatility Curve of Option Prices and Implications for Financial Distribution Industry (옵션 내재 변동성곡선의 정보효과와 금융 유통산업에의 시사점)

  • Kim, Sang-Su;Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.

Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis (선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘)

  • Kang, Seung-Hyun;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.

Mathematical Analysis of Growth of Tobacco (Nicotiana tabaccum L.) II. A New Model for Growth Curve (담배의 생장반응에 관한 수리해석적 연구 제2보 담배생장곡선의 신모형에 관하여)

  • Kim, Y.A.;Ban, Y.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.84-86
    • /
    • 1982
  • The experiment was conducted with three varieties (Hicks, Burley 21, and Sohyang) and cultivation type (Improved mulching, general mulching, and non mulching) of NC 2326 to model to curve of tabacco growth against time. The basic growth data were obtained by harvest method at intervals of ten days from transplanting at 7-8 times and analyzed by polynomial regression, orthogonal polynomial, and logarithmic transformation. It is shown that the C model of growth curve: T = A +$\sqrt{(1.4 AK + K)}$2K provides an excellent fit.

  • PDF

Estimation of regional flow duration curve applicable to ungauged areas using machine learning technique (머신러닝 기법을 이용한 미계측 유역에 적용 가능한 지역화 유황곡선 산정)

  • Jeung, Se Jin;Lee, Seung Pil;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1183-1193
    • /
    • 2021
  • Low flow affects various fields such as river water supply management and planning, and irrigation water. A sufficient period of flow data is required to calculate the Flow Duration Curve. However, in order to calculate the Flow Duration Curve, it is essential to secure flow data for more than 30 years. However, in the case of rivers below the national river unit, there is no long-term flow data or there are observed data missing for a certain period in the middle, so there is a limit to calculating the Flow Duration Curve for each river. In the past, statistical-based methods such as Multiple Regression Analysis and ARIMA models were used to predict sulfur in the unmeasured watershed, but recently, the demand for machine learning and deep learning models is increasing. Therefore, in this study, we present the DNN technique, which is a machine learning technique that fits the latest paradigm. The DNN technique is a method that compensates for the shortcomings of the ANN technique, such as difficult to find optimal parameter values in the learning process and slow learning time. Therefore, in this study, the Flow Duration Curve applicable to the unmeasured watershed is calculated using the DNN model. First, the factors affecting the Flow Duration Curve were collected and statistically significant variables were selected through multicollinearity analysis between the factors, and input data were built into the machine learning model. The effectiveness of machine learning techniques was reviewed through statistical verification.

Studies on the Mathematical Analysis of Growth Kinetics in Tobacco (Nicotiana tabacum L. ) I. Growth Curve and Growth Velocity of Total Dry Weight. (담배의 생장반응에 관한 수리해석적 연구 I. 전건물중의 생장곡선과 생장속도)

  • 김용암;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 1981
  • This experiment was conducted with three varieties (Hicks, Burley 21, Sohyang) and cropping systems (Improved mulching, Mulching, Non mulching) of NC 2326 to analyze growth kinetics by means of growth function involving its velocity and accelerated velocity. The basic growth data were obtained by harvest method at interval of ten days from transplanting to hundred days and analyzed by , regression equation, determinant of matrix, and differentiation. The plot of total dry weight of leaves, stalk and roots per a plant vs. time forms a sigmoid curve and its function fitted logistic satisfactorily. Tobacco plant grows at an accelerated velocity. And growth velocity, symmetric about an inflection point, is proportional to biomass attained and to the difference between biomass attained and the maximum, and to the decrease according to the biomass. Of varieties and cropping systems, the most maximum velocity was 9.58g per day per plant in mulching cultivation of NC 2326 and maximum accelerated velocity was 264mg per $day^2$ per plant in Burley 21.

  • PDF

Measurement of Langmuir Adsorption Equilibrium by Elution-curve Method and Frontal Analysis (용출곡선법과 Frontal Analysis를 이용한 Langmuir 흡착평형식의 측정)

  • Choi, Yong Seok;Lee, Chong Ho;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.672-676
    • /
    • 1999
  • Adsorption isotherm is the most fundamental information in adsorption separation-process. Directly from the elution profile of a peak, the elution-curve method and frontal analysis(FA) were utilized to measure the adsorption isotherm in this work. Using RP-HPLC, sample and the buffer added in mobile phase were 5'-GMP and sodium phosphate, respectively. In this experimental condition, the retention time was decreased with increase in the injected mass of sample. And the front part of a peak was very stiff, so Langmuir adsorption isotherm might be applied. By the elution-curve method, the parameters used in the isotherm were obtained by optimization method, while by the FA, the concentrations of stationary phase were measured from the elution curve and the isotherm was determined by regression analysis. Compared to FA, the consumption of sample was less, and only one or two injections were needed by the elution-curve method. Finally, the effect of concentration of sodium phosphate in mobile phase on the parameters of the isotherm was investigated.

  • PDF

Development of seismic fragility curves for high-speed railway system using earthquake case histories

  • Yang, Seunghoon;Kwak, Dongyoup;Kishida, Tadahiro
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • Investigating damage potential of the railway infrastructure requires either large amount of case histories or in-depth numerical analyses, or both for which large amounts of effort and time are necessary to accomplish thoroughly. Rather than performing comprehensive studies for each damage case, in this study we collect and analyze a case history of the high-speed railway system damaged by the 2004 M6.6 Niigata Chuetsu earthquake for the development of the seismic fragility curve. The development processes are: 1) slice the railway system as 200 m segments and assigned damage levels and intensity measures (IMs) to each segment; 2) calculate probability of damage for a given IM; 3) estimate fragility curves using the maximum likelihood estimation regression method. Among IMs considered for fragility curves, spectral acceleration at 3 second period has the most prediction power for the probability of damage occurrence. Also, viaduct-type structure provides less scattered probability data points resulting in the best-fitted fragility curve, but for the tunnel-type structure data are poorly scattered for which fragility curve fitted is not meaningful. For validation purpose fragility curves developed are applied to the 2016 M7.0 Kumamoto earthquake case history by which another high-speed railway system was damaged. The number of actual damaged segments by the 2016 event is 25, and the number of equivalent damaged segments predicted using fragility curve is 22.21. Both numbers are very similar indicating that the developed fragility curve fits well to the Kumamoto region. Comparing with railway fragility curves from HAZUS, we found that HAZUS fragility curves are more conservative.