• Title/Summary/Keyword: Time Constraint Applications

Search Result 95, Processing Time 0.027 seconds

A Minimum time trajectory planning for robotic manipulators with input torque constraint (입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획)

  • Hong, In-Keun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF

A Dynamic Channel Allocation Algorithm Based on Time Constraints in Cellular Mobile Networks

  • Lee Seong-Hoon
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.31-34
    • /
    • 2005
  • The new realtime applications like multimedia and realtime services in a wireless network will be dramatically increased. However, many realtime services of mobile hosts in a cell cannot be continued because of insufficiency of useful channels. Conventional channel assignment approaches didn't properly consider the problem to serve realtime applications in a cell. This paper proposes a new realtime channel assignment algorithm based on time constraint analysis of channel requests. The proposed algorithm dynamically borrows available channels from neighboring cells. It also supports a smooth handoff which continuously serves realtime applications of the mobile hosts.

  • PDF

The Optimal Link Scheduling in Half-Duplex Wireless Mesh Networks Using the Constraint Programming (제약식 프로그래밍을 이용한 일방향 전송 무선 메쉬 네트워크에서의 최적 링크 스케쥴링)

  • Kim, Hak-Jin
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.2
    • /
    • pp.61-80
    • /
    • 2016
  • The wireless mesh network (WMN) is a next-generation technology for data networking that has the advantage in cost and the flexibility in its construction because of not requiring the infra-structure such as the ethernet. This paper focuses on the optimal link scheduling problem under the wireless mesh network to effectuate real-time streaming by using the constraint programming. In particular, Under the limitation of half-duplex transmission in wireless nodes, this paper proposes a solution method to minimize the makespan in scheduling packet transmission from wireless nodes to the gateway in a WMN with no packet transmission conflicts due to the half-duplex transmission. It discusses the conflicts in packet transmission and deduces the condition of feasible schedules, which defines the model for the constraint programming. Finally it comparatively shows and discusses the results using two constraint programming solvers, Gecode and the IBM ILOG CP solver.

Recent Trends in Receding Horizon Control (이동 구간 제어기의 최근 기술 동향)

  • Kwon, Wook Hyun;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.235-244
    • /
    • 2014
  • This article introduces recent trends in RHC (Receding Horizon Control), also known as MPC (Model Predictive Control), that has been well recognized in industry and academy as a systematic approach for optimal design and constraint management. Constrained and robust RHCs will be briefly reviewed with milestone results. Among the diverse developments and achievements of RHCs, implementation issues will be focused on, together with the latest applications. In particular, this article introduces results on how to solve a finite horizon open-loop optimal control problem in an efficient way, together with code generation for real-time execution and easy implementation. Instead of traditional applications such as refineries and petrochemical plants, this article highlights some selected emerging applications, such as energy management systems and mechatronics, that have resulted from state-of-the-art high performance computing power and advanced numerical schemes.

Hierarchical Real-Time MAC Protocol for (m,k)-firm Stream in Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2010
  • In wireless sensor networks (WSNs), both efficient energy management and Quality of Service (QoS) are important issues for some applications. For creating robust networks, real-time services are usually employed to satisfy the QoS requirements. In this paper, we proposed a hierarchical real-time MAC (medium access control) protocol for (m,k)-firm constraint in wireless sensor networks shortly called HRTS-MAC. The proposed HRTS-MAC protocol is based on a dynamic priority assignment by (m,k)-firm constraint. In a tree structure topology, the scheduling algorithm assigns uniform transmitting opportunities to each node. The paper also provides experimental results and comparison of the proposed protocol with E_DBP scheduling algorithm.

In-Route Nearest Neighbor Query Processing Algorithm with Time Constraint in Spatial Network Databases (공간 네트워크 데이터베이스에서 시간제약을 고려한 경로 내 최근접 질의처리 알고리즘)

  • Kim, Yong-Ki;Kim, Sang-Mi;Chang, Jae-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.196-200
    • /
    • 2008
  • Recently, the query processing algorithm in spatial network database (SNDB) has attracted many interests. However, there is little research on route-based query processing algorithm in SNDB. Since the moving objects moves only in spatial networks, the route-based algorithm is very useful for LBS and Telematics applications. In this paper, we analyze In-Route Nearest Neighbor (IRNN) query, which is an typical one of route-based queries, and propose a new IRNN query processing algorithm with time constraint. In addition, we show from our performance analysis that our IRNN query processing algorithm with time constraint is better on retrieval performance than the existing IRNN query processing one.

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

Cache Invalidation Schemes based on Time Guarantee for Improving Access Time in Mobile Ad hoc Networks (모바일 애드혹 네트워크에서 캐쉬 접근 시간 향상을 위한 시간보증 기반의 캐쉬무효화 기법)

  • Choi, Jae-Ho;Oh, Jae-Oh;Lee, Myong-Soo;Lee, Sang-Keun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.65-72
    • /
    • 2009
  • Due to the popularity of mobile devices and advances in wireless communication technologies, a mobile ad hoc network has received a lot of attention. In the existing data replication management research, the use of a replica has been shown to be an efficient technique for improving data accessibility. However, to use a replica in ad hoc networks, the data consistency between the original data and the replica should be guaranteed. In the traditional research, a mobile node should check an original data whether the data is updated or not. However, It may be costly or sometimes impossible to check the original data. In the case of the time constraint applications, the checking cost can cause more serious problem. In this paper, we propose the time-guarantee based cache invalidation schemes for time constraint applications and the threshold based compensation method to enhance the time-guarantee based scheme. The proposed schemes can remove the "rollback" problem. Simulation results show that our schemes outperform the previous ones in terms of access time with little loss of data currency.

Co-scheduling Technique of Dataflow Applications with Shared Processor Allocation (프로세서 공유를 이용한 데이터 플로우 어플리케이션의 동시 스케줄링 기법)

  • Kang, Duseok;Kang, Shinhaeng;Yang, Hoeseok;Ha, Soonhoi
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • When multiple applications are running concurrently on a multi-processor system, interferences between applications make it difficult to guarantee real-time constraints. We propose a novel interference analysis technique that allows sharing of share processors among dataflow applications, while satisfying real-time constraints. Based on the interference analysis, we develop a co-scheduling technique that aims to minimize the resource usage. Compared to an existent technique that involves converting application graphs to real-time tasks, the proposed technique shows better results in terms of resource usage, especially when it is applied to applications with tight time constraints.