• Title/Summary/Keyword: Tiltrotor Aircraft

Search Result 16, Processing Time 0.029 seconds

Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft (신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가)

  • Lee, Ki Young;Kim, Byoung Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

Tiltrotor Aircraft SCAS Design Using Neural Networks (신경회로망을 이용한 틸트로터 항공기 SCAS 설계)

  • Han, Kwang-Ho;Kim, Boo-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • This paper presents the design and evaluation of a tiltrotor attitude controller. The implemented response type of the command augumentation system is Attitude Command Attitude Hold. The controller architecture can alleviate the need for extensive gain scheduling and thus has the potential to reduce development time. The control algorithm is constructed using the feedback linearization technique. And an on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge tiltrotor aircraft dynamics is applied to augment the attitude control system. The use of Lyapunov stability analysis guarantees boundedness of the tracking error and network parameters. The performance of the controller is evaluated against ADS-33E criteria, using the nonlinear tiltrotor simulation code for Bell TR301 developed by KARI. (Korea Aerospace Research Institute)

Increasing Endurance Performance of Tiltrotor UAV Using Extended Wing (확장날개를 이용한 틸트로터 무인기 체공성능 향상)

  • Lee, Myeong Kyu;Lee, Chi-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2016
  • A new configuration of tiltrotor UAV previously suggested by Korea Aerospace Research Institute (KARI) for the purpose of increasing the endurance performance in airplane mode flight has extended wings attached to the nacelle and rotated with the nacelle according to the flight modes. In this research, the effectiveness of the extended wing on the enhancement of the endurance performance of KARI tiltrotor UAV (TR60) was analytically investigated based on CFD analysis results. Flight tests and ground tests of measuring the fuel consumption were also conducted to directly compare the endurance performance for the two configurations of TR60 baseline and TR60 extended-wing model.

Synthetic Overview on the Dispute about Tiltrotor Technology and Flight Safety (틸트로터 비행체 개념에 대한 기술적 논란 및 비행안전성 논란 분석)

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.254-262
    • /
    • 2008
  • Several decades have passed since tiltrotor technology became a hot issue of debates between aircraft majors, policy maker and mass-media. Although most of those subjects have been officially probed or answered in objective way, biased articles or argues related with the adequacy of this technology still prevail in the way of tilt-rotor development programs, which are totally irrelevant and out-dated. This paper aims to help understanding on those issues in technically balanced manner and the cases of flight test mishaps.

  • PDF

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Development of Avionics System for the 200 kg-class Tiltrotor UAV (200 kg급 틸트로터 무인기의 항공전자시스템 개발)

  • Chang, Sungho;Cho, Am;Park, Bumjin;Choi, Seongwook
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.65-69
    • /
    • 2013
  • Avionics system designed for the 200 kg-class tiltrotor UAV has been developed. Avionics system for the UAV is the reconstruct system and can be programmed automation controller. This paper focuses on the design aspects of the hardware and presents the ground and flight test results. The hardware aspects of the avionics system include details about the hardware configurations for the interfaces with the Digital Flight Control Computer, sensors and Line-replaceable unit modifications.

Aerodynamic Design of the SUAV Proprotor (스마트무인기 프롭로터 공력설계)

  • Choi, Seong-Wook;Kim, Yu-Shin;Park, Young-Min;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.16-26
    • /
    • 2005
  • The aerodynamic design of a proprotor for the Smart UAV adopting tiltrotor aircraft concept is conducted in this study. Since proprotor of tiltrotor aircraft is operated at both rotary and fixed wing mode with single configuration rotor, the proprotor has to be designed to meet performance requirements for both flight modes. The aerodynamic design of proprotor is accomplished by combining three sources of data - the proprotor performance data, the aerodynamic data of vehicle, and the performance data of engine. The performance analysis code for proprotor is based on the combined momentum and blade element theory and validated by comparison with the TRAM data. In order to design configuration for a proprotor satisfying requirements for both rotary and fixed wing mode, various kind of performance maps are constructed for many performance and configuration parameters. From the analysis the twist angle of 38 degrees and the solidity of 0.118 are decided to be the optimal geometric parameters for both operating conditions.

Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV (스마트무인기 로터 공탄성 및 훨플러터 안정성 해석)

  • 김도형;이주영;김유신;이명규;김승호
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.75-82
    • /
    • 2006
  • Tiltrotor aircraft can fly about twice faster and several times further than conventional helicopters. These aircraft provide advantages preventing compressibility of advancing side and stall of retreating side of blades because they take forward flight with tilting rotor systems. However, they have limit on forward flight speed because of the aeroelastic instability known as whirl flutter. First, the parametric study on the aeroelastic stability of the isolated rotor system has been performed in this paper. And the effects of pitch-link stiffness, gimbal spring constant, and precone angle on the whirl flutter stability of Smart-UAV have been investigated through CAMRAD II analysis.

Aerodynamic Analysis on Wing-Nacelle of Tiltrotor UAV (틸트로터 무인기의 날개-나셀 공력해석)

  • Choi Seong Wook;Kim Cheol Wan;Kim Jai Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.27-34
    • /
    • 2004
  • In the Smart UAV Development Program, one of the 21c Frontier R&D Program, the tiltrotor has been studied as the concept of vehicle. The tiltrortor aircraft take-off and land in rotary wing mode like conventional helicopter, and cruise in fixed wing mode like conventional propeller airplane. For the conversion of the flight mode from helicopter to airplane, the nacelle located at wing tip has to be tilted from about 90 degrees of helicopter mode to about 0 degree of airplane mode. In this study, the aerodynamic characteristics of the wing with tilted nacelle is investigated using computation fluid dynamics technique. In order to feature out aerodynamic interferences between wing and nacelle, the flow calculations are conducted for the wing and the nacelle separately and for the combined geometry of wing and nacelle, respectively. Through this computations, not only the aerodynamic data-base for the wing-nacelle is constructed but also its contribution to the configuration design of the wing-nacelle is anticipated.

  • PDF

Trouble Shooting for Fully Automatic Flight Test of Small Scaled Tiltrotor UAV (축소형 틸트로터 무인기의 전자동 비행시험을 위한 문제해결과정)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Koo, Sam-Ok;Lee, Jang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The ground integration test of Smart UAV has been performed according to the flight test plan. The flight test of full scaled model will be performed followed by 4 DOF ground rig test and a tethered hover test. Smart UAV is the first indigenous tiltrotor aircraft which can fly with fast cruise speed and take off or land vertically. In order to prove the flight control law of Smart UAV, the 40% scaled airplane was developed and have been tested. During flight test of small scaled model, many unique and unexpected problems occurred. After clearing these problems, fully automatic flight test was performed successfully. The experiences about many trouble shooting and resolving the problems would be basic material to avoid the unexpected but similar flight test problems hidden behind of the full scaled Smart UAV. This paper presents the detailed procedures of trouble shootings to solve the unique problems which occurred during the flight test of small scaled tiltrotor UAV.

  • PDF