• 제목/요약/키워드: Tilting-pad bearings

검색결과 67건 처리시간 0.02초

능동 공기 베어링에 의한 로터계 동기진동의 PID제어 (PID Control of a Synchronous Rotor System Vibration with Active Air Bearing)

  • 권대규;이영춘;이성철
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.32-39
    • /
    • 2001
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external force can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the vapidity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

  • PDF

프로세스 고속 경량 원심 압축기의 로터다이나믹 안정성 강화를 위한 설계해석 - Part I: 베어링 설계의 영향 (Design Analysis to Enhance Rotordynamic Stability of High-Speed Lightweight Centrifugal Compressor - Part I: Effects of Bearing Designs)

  • 이안성
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.386-391
    • /
    • 2013
  • Part I of this study analyzed the effects of tilting pad bearing designs to reduce the stiffness of the bearings used in a process high-speed lightweight centrifugal compressor intended for a domestic refinery use. This was done in an attempt to enhance the robustness of its rotordynamic stability against possible aerodynamic cross-coupled stiffness. The bearing design variables reviewed were the clearances, LBPs, LOPs, and preloads. The results showed that there was practically no difference between the LBP and LOP designs in terms of the bearing stiffness, because the compressor rotor was lightweight and the bearings had relatively high preloads. Increasing both the machined and assembled clearances in bearing designs has resulted in the bearing stiffness being greatly reduced. In addition, it has been confirmed that an additional reduction in the bearing stiffness can be obtained for given fixed machined clearances by decreasing the preloads, i.e., by increasing the assembled clearances.

유막 베어링에 지지된 탄성회전체의 모드 밸런싱 실험 (Experiment Onmodal Balancing of a Flexible Rotor Supported on Fluid Film Bearings)

  • 정시영;이동환;김영철;제양규
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.235-246
    • /
    • 1995
  • Experiment on the modal balancing of a flexible rotor supported on two kinds of fluid film bearings is performed to verify the modal balancing theory. The fluid film bearings are a tilting pad bearing and a two axial grooved journal bearing. One is inherently stable, but the other is not. The experimental result shows that the modal balancing method is effective for balancing of a high speed flexible rotor system. Besides, the critical speeds and mode shapes measured experimentally are in good coincidence with the results of rotordynamic analysis. Oil whip, which is the instability phenomenon due to fluid film force, is also observed during the experiment.

  • PDF

MVR 담수화장비용 터보 증기압축기의 개발 (Development of Turbo Steam Compressors for MVR System)

  • 오종식;성병일;현용익
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.482-486
    • /
    • 2003
  • A high-efficiency turbo steam compressor has been successfully developed for the MVR desalination system, first one in Korea. The state-of-the-art design methods using real gas properties were applied to get all the aerodynamic design results. Bull and pinion gear trains, tilting-pad bearings and investment cast impellers were developed also to be integrated into the integral gear-driven turbo steam compressor. System tests show highly efficient performance.

  • PDF

프로세스 고속 경량 원심 압축기의 로터다이나믹 안정성 강화를 위한 설계해석 - Part II: 로터다이나믹 안정성 개선 (Design Analysis for Enhancing Rotordynamic Stability of Process High-Speed Light weight Centrifugal Compressor - Part II: Improvements to Rotordynamic Stability)

  • 이안성
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.9-14
    • /
    • 2014
  • In this Part II study, rotordynamic stability analyses were carried out to confirm improvements to the stability of a process high-speed lightweight centrifugal compressor, depending on the effects of tilting pad journal bearing designs. The bearing design variables considered were the clearances, LBPs, LOPs, and preloads. The results showed that the rotordynamic stability of the subject compressor rotor-bearing system improves exactly in accordance with the effects of the bearing design variables, which were determined in the preceding Part I study, owing to reduced bearing stiffnesses. Specifically, it was confirmed that the stability of the rotor system can be greatly improved by increasing both the machined and assembled bearing clearances, but there were no stability improvements by simply changing from an LBP to an LOP design. In addition, it was confirmed that for given fixed machined bearing clearances, the stability can be additionally improved by decreasing the preloads, i.e., by increasing the assembled clearances. In conclusion, it may be necessary to improve the designs of the original tilting pad bearings to obtain a sufficient margin of rotordynamic stability against a possible aerodynamic cross-coupled stiffness in a process high-speed centrifugal compressor. Thus, increasing the machined and assembled bearing clearances and decreasing the preload could be effective solutions.

산소공장 공기터보압축기(ATC)의 회전체동역학 설계특성 분석 및 진동저감 (Analysis of Rotordynamic Design Characteristics and Vibration Reduction of an Air Turbo Compressor for Oxygen Plant)

  • 김병옥;이안성
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.43-48
    • /
    • 2010
  • In this study rotordynamic characteristics of an air turbo-compressor (ATC) used in oxygen plant are analyzed and its operating-speed balancing is performed to solve the vibration trouble caused by rotor unbalance. Three dimensional model of the ATC rotor is completed and then analytical FE (finite element) model, which is verified by experimental modal testing, is developed. A rotordynamic analysis includes the critical map, Campbell diagram, and unbalance response, especially considering the pedestal housings supporting tilting pad bearings. A test run of operating-speed, using tilting-pad bearing of actual use, showed that the vibration level increased very sharply as approaching the rated speed. The operating-speed balancing specified by API 684 was carried out by using influence coefficient method. The results showed that the vibrations at the bearing pedestal housings represented good levels of 0.1 mm/s. From the test run and operating-speed balancing, the analytical results, that is, critical speeds are in good agreement with the test results and unbalance responses introducing the correction masses are similar to the as-is test responses in its aspect.

패드의 선단압력을 고려한 부채꼴 모양의 피봇식 추력베어링의 성능해석 (An analysis of the performance of sector shaped, pivoted pad thrust bearings in consideraation of the inlet pressure)

  • 김종수;김경웅
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1063-1070
    • /
    • 1988
  • 본 연구에서는 부채꼴형 유한폭 패드베어링에서의 선단압력을 구하기 위하여 3차원 유동모델을 제시하였으며, 이 유동모델을 기초로 하여 구해진 선단압력을 패드 선단에서의 압력경계조건으로 사용하여 유막내의 압력을 구하고 베어링의 하중지지능 력, 마찰토오크 및 윤활유량등을 계산함으로써 베어링의 성능을 해석하였다. 그 결 과 선단 압력이 크게 발생하는 운전조건일수록 선단압력을 무시한 종래의 베어링 성능 해석결과와는 상당한 차이가 있었으며, 특히 관성계수가 큰 운전조건에서 사용되는 피 봇식 추력베어링에서는 선단압력의 영향으로 인하여 하중지지능력을 최대로하는 피봇 점의 위치가 패드 선단부쪽으로 크게 이동되었다.

Spragging 에 의한 터빈 베어링의 손상 및 방지 대책 (Analysis for Prevention of Spragging in the Turbine Bearings)

  • 하현천;양승헌
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.174-178
    • /
    • 1999
  • This paper describes an investigation on bearing failure due to spragging that has been continuously occurred in turbine hearings. The spragging is defined as the damage found on the leading edge of unloaded pads in the tilting pad journal bearing, In general, the damage mechanism by spragging is classified into fatifgue failure, The principle cause of spragging could be thought as the self-excited vibration by the absence of a stable static equilibrium position of upper pads with no preload. Because of serious consequences of system breakdowns due to bearing failures, determination ar the causes of failure and effective method for countermeasures are very important. This paper describes both the causes of spragging and countermeasures for prevention of such failure, which are taken place in the electric power plants.

  • PDF

600HP급 기어구동형 터보 공기압축기 회전체계의 동역학적 설계 및 해석 (Rotordynamic Design and Analysis of the Rotor-Bearing System of a 600HP Gear Driven Turbo-Compressor)

  • 최상규;김영철;권병수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.50-57
    • /
    • 1997
  • A 600HP class high-speed gear driven 3-stage turbo-compressor (IGCC : Integrally Geared Centrifugal Compressor) driven by a 3600 rpm AC induction motor has been designed, of which low speed pinion runs at 35000 rpm and high speed pinion at 50000 rpm nominally. Due to its high speed operation, the system requires very reliable bearing selection and design as well as accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the IGCC rotor-bearing system predicted that the low speed pinion rotor mounted on 5-pad tilting pad bearings has two critical speeds before its design speed and high speed pinion rotor only one critical speed, and estimated critical speeds of both pinion shafts are away from the continuous operating speed enough to satisfy the corresponding API requirement. The forced response analysis with API specified maximum allowable unbalances also showed that unbalance responses are small enough for smooth operation of the system.

  • PDF

API 617 규격에 의거한 프로세스 가스 터보압축기의 로터다이나믹 해석 및 안정성 검토 (A Rotordynamic and Stability Analysis of Process Gas Turbo-Compressor in accordance with API 617 Standard)

  • 김병옥;이안성
    • 한국유체기계학회 논문집
    • /
    • 제12권5호
    • /
    • pp.47-53
    • /
    • 2009
  • A rotordynamic and detailed stability analysis in accordance with API 617 standard were performed with a turbo-compressor, which is one of key rotating machinery in refinery, petroleum, and power plants. The system is composed of rotor shaft, impeller, sleeve hub, balance drum, and coupling hub. The rotor system is supported by tilting pad bearings, which has 5 pads and pad on loading condition. The rotordynamic analysis specified by API 617 includes the critical speed map, mode shape analysis, Campbell diagram, unbalance response analysis, and stability analysis. In particular, the specifications of stability analysis consist of a Level 1 analysis that approximates the destabilizing effects of the labyrinth seals and aerodynamic excitations, and Level 2 analysis that includes a detailed labyrinth seal aerodynamic analysis. The results of a rotordynamic analysis and stability analysis can evaluate the operating compressor health and can be utilized as a guide of its maintenance, repair and trouble solution.