• Title/Summary/Keyword: Tilt angle

Search Result 620, Processing Time 0.025 seconds

A Numeical Analysis on the Thermal and Fluid Flow in Solar Concentration Absorber with Tilt Angle (경사각도 변화에 따른 태양열 집광흡수기내의 열 유체 유동에 관한 수치해석)

  • Lee, Y.H.;Bae, C.H.;Bae, K.Y.;Jeong, H.M.;Chung, H.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.33-41
    • /
    • 2001
  • This paper showed the a numerical analysis of the thermal and fluid flow in solar concentration absorber with tilt angle, and the purpose of this study is to obtain the optimum tilt angle of the absorber. The boundary conditions of a numerical model were assumed as flows : (1) The heat source is located at the center of absorber (3) The bottom wall is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the numerical analysis are tilt angles and Rayleigh numbers i.e., tilt angle $\theta=0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ and 101 $\leq$ Ra $\leq$ 103. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at $\theta=0^{\circ}$ and showed a low value as the tilt angles were increased. Finally, the decrease rate of mean Nusselt number was appeared small with tilt angle when Rayleigh numbers were increased.

  • PDF

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 최적가공경로의 선정)

  • Lim T. S.;Lee C. M.;Kim S. W.;Lee D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

Real Time Tilt Servo Control of The Holographic Data Storage System (홀로그래픽 정보 저장 장치에서의 실시간 틸트 서보 제어)

  • Moon, Jae-Hee;Kim, Sang-Hoon;Yang, Jun-Ho;Yang, Hyun-Seok;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • The purpose of this paper is real time tilt servo control of the holographic data storage system. Holographic data storage device is a next generation data storage device with high storage density, high transfer rate and short access time. This device is very sensitive to a disturbance due to the enormous storage density. As to the recording material changed disc type, the media continuously vibrates as the disc rotates. When disc rotates, deviation, eccentricity and unbalance disturbance are occurred. This disturbances cause disc tilt, finally reference beam does not illuminates to correct incidence angle. Therefore real time tilt servo control is essential. In this paper, the algorithm is proposed to make real time tilt detection in angle multiplexing of the holographic data storage system with an additional servo beam and the experiments are performed.

  • PDF

Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis

  • Li, Xiaomei;Cao, Zhizhong;Qiu, Xiaoqian;Tang, Zhen;Gong, Lulu;Wang, Dalin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.240-248
    • /
    • 2015
  • PURPOSE. To explore whether there is matching relation between the length and the tilting angle of terminal implants in the All-on-Four protocol by studying the effects of different implant configurations on stress distributions of implant, bone, and framework. MATERIALS AND METHODS. Four implants were employed to support a full-arch fixed prosthesis and five three-dimensional finite element models were established with CT images, based on the length (S and L) and distal tilt angle ($0^{\circ}$, $30^{\circ}$ and $45^{\circ}$) of terminal implants for an edentulous mandible, which named: Tilt0-S, Tilt30-S, Tilt30-L, Tilt45-S and Tilt45-L. An oblique 240 N was loaded at second molar. The von Mises Stresses were analyzed. The implants were consecutively named #1 to #4 from the loading point. RESULTS. 1) Tilt0-S had the greatest stress on the implants, with the other groups exhibiting variable reductions; the four implants of Tilt45-L demonstrated the greatest reduction in stress. 2) Tilt0-S had the greatest stress at bone around #1 implant neck, and Tilt45-L exhibited the least stress, which was a 36.3% reduction compared to Tilt0-S. 3) The greatest stress in the framework was found on the cantilevers distal to #1 implant. Tilt45-S exhibited the least stress. CONCLUSION. Matching different length and tilting angle of the terminal implants led to variable stress reductions on implants, bone and the superstructure. By optimizing implant configuration, the reduction of stress on implants and surrounding bone could be maximized. Under the present condition, Tilt45-L was the preferred configuration. Further clinical testings are required.

Influence of plastic AFO on the Angle of Pelvic Tilt in the Patients with Hemiplegia (단하지 보조기가 편마비 환자의 골반경사각에 미치는 영향)

  • Moon, Young-Seok;Hwang, Byong-Yong
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.693-699
    • /
    • 2001
  • The use of AFO in the management of patients with hemiplegia has been somewhat controversial. The purpose of the study was to identify the influence of the plastic ankle foot orthoses(AFO) on the characteristics of pelvic tilt in the patients with hemiplegia. Sixteen hemiplegic patients participated. The angle of pelvic tilt were measured using the BROM II . Results showed that the hemiplegia who weared plastic AFO, the angle of pelvic tilt was significantly less than not weared subjects. However. duration of wearing a plastic AFO and the degree of spasticity were not affected to the angle of pelvic tilt. Therefore the patients with hemiplegia should consider using the brace for the right purpose, also need to maintain the mobility of ankle joint while wearing the plastic AFO.

  • PDF

A study on the efficient use of solar energy -Analysis of the solar radiation distribution by tilts and azimuths - (태양에너지의 효율적 이용에 관한 연구 - 방위각 및 경사각별 일사량 분포도 분석 -)

  • Choi, Young Su;Lee, Seung Hwan;Kim, Jin Hyun;Choe, Jung Seob;Kim, Tae Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • This research is carried out to provide fundamental data for the design of solar photovoltaic systems. Methodologically, the solar radiation installations from 10 different pyreheliometers are measured, which are set up at 6 and 4 different levels of tilts and azimuth, respectively. Maximum of a yearly accumulated solar radiation is $1,569.8kWh/m^2{\cdot}year$ with a tilt angle of $30^{\circ}$ and an azimuth angle of $0^{\circ}$(south), $1,558.5kWh/m^2{\cdot}year$ with an azimuth angle of $0^{\circ}$(south) in combination of a tilt angle of $35^{\circ}$. This paper estimates that in designing fixed solar photovoltaic systems with a tilt angle of $12.5^{\circ}{\sim}50^{\circ}$(south) and a tilt angle of $35^{\circ}$ in combination of an azimuth angle of $S45^{\circ}W{\sim}S45^{\circ}E$, a tilt angle and an azimuth angle will cause a maximum 6.8% and 9.9% of efficiency variation respectively, depending on a installed solar module's angle and direction.

A Study on Weight Bearing and Weight Shifting of Lower Extremity According to the Pelvic Tilt Angle in Hemiplegic Patients (편마비 환자의 골반경사 각도에 따른 하지체중지지 및 체중이동에 관한 연구)

  • Seo, Gyu-Won;Kwon, Chun-Suk;Sin, Hong-Cheul
    • Journal of Korean Physical Therapy Science
    • /
    • v.2 no.3
    • /
    • pp.609-622
    • /
    • 1995
  • The purpose of this study was l)to compare a pelvic tilt angle between sound side and affected side in hemiplegic patients, 2)to determine the difference of weight bearing and weight shifting between sound and affected lower extremity according to the pelvic tilt angle. The subject for the study were 40 hemiplegic patients(mean age of 55.6 years)without orthopedic disability on pelvic bone. The data were analyzed by t-test, one way ANOVA, Multiple comparison and Range. The results of this study were as follows : 1. There was a significant difference in the pelvic tilt angle between sound side and affected side in hemiplegic patients(p<0.05). 2. There was a significant difference in the weight bearing value between sound and affected side in hemiplegic patients according to the posterior pelvic tilt angle(F = 12.43, df = 3/36, p<0.001). Therefore, the lesser the posterior pelvic tilt angle, the higher the weight bearing value on the affected side. 3. The lesser the posterior pelvic tilt angle, the higher the weight shifting value on the affected side. 4. There was a significant difference in weight bearing value between sound and affected side according to the grade spasticity(F = 3.61, df = 4/35, p<0.05). Therefore, the higher the grade spasticity, the lower the weight bearing value on affected side.

  • PDF

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

Comparison of Dead Bug Exercise and Abdominal Draw-in Exercise on the Activities of Lumbar Extensor Muscles and the Pelvic Angle during Prone Hip Extension in Women with Weak Abdominal Muscles (복부근력이 약한 여성에게 데드버그 운동과 복부 드로우-인 운동이 엉덩관절 폄 시 허리폄근의 근활성도와 골반각도에 미치는 영향 비교)

  • Kim, Dongwoo;Cho, Namjeong;Kim, Taeho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Purpose : The aim of this study was to compare the effects of the abdominal draw-in exercise (ADIE) and the dead bug exercise (DBE) on the pelvic anterior tilt angle and the activities of the gluteus maximus (GM), erector spinae (ES), and semi tendinosus (ST) during prone hip extension. Methods : A total of 22 female adults with weak abdominal muscles were divided into two groups: ADIE group (n=11) and DBE group (n=11). The muscle activities of the GM, ES, and ST along with the pelvic anterior tilt angle during prone hip extension were measured using a wireless surface electromyograph and gyro sensor before performing the prescribed exercise. Two groups conducted the assigned exercise for 10 minutes. After the exercise, their muscle activities and the pelvic anterior tilt angle were equally re measured. Results : In the DBE group, the muscle activity of GM was significantly increased after the intervention (p<0.05). However, there was no significant difference between the two groups in the amount of increase in the activity of GM (p>0.05). Moreover, in both groups, the activity of ES and the pelvic anterior tilt angle decreased significantly after the intervention (p<0.05) The decreased quantity in the pelvic anterior tilt angle and in the activity of ES showed no difference between the two groups (p>0.05). In the activity of ST, there was no significant difference within and between the two groups (p>0.05). Conclusion : Therefore, we suggest that ADIE and DBE are effective for women with weak abdominal muscles since the ES activity and pelvic anterior tilt angle are reduced during prone hip extension.

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF