• Title/Summary/Keyword: Tight-junction

Search Result 148, Processing Time 0.037 seconds

Eine Structure of Digital Arteries in Rat (흰쥐 수지동맥의 미세구조에 관한 연구)

  • Kim, Baik-Yoon;Shin, Keun-Nam
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.83-94
    • /
    • 1999
  • The ultrastructure of small arterioles and capillaries in the lumbrical muscles of rat digits were studied by electron microscopy and following results were obtained. 1. The diameter of small arterioles of rat digits were $12\sim20{\mu}m$, and it was relatively smaller than human $(30\sim35{\mu}m)$. 2. All the endothelial cells of small arterioles and capillaries in the lumbrical muscles of rat digits were continuous type, and they had typical morphological characteristics of continuous endothelial cells : numerous cytoplasmic pinocytic vesicles and many tight junctions between the endothelial cells. 3. In the small arterioles subendothelial layers were irregularly spaced beneath the basal lamina, and membrane to membrane contacts were found between the endothelial cells and smooth muscle cells. 4. Pericytes were often found nearby capillary endothelium, and their cytoplasmic processes surrounded part of endothelial cells. They were enclosed by basal lamina. 5. Smooth muscle cells in tunica media of small arterioles were only one layered, that is, they were terminal arterioles. Sarcoplasm of smooth muscle cell was divided to 2 areas; homogeneous or filamentous area and non-homogeneous perinuclear area. 6. The tunica adventitia contained fibroblasts with extremely attenuated cytoplasmic processes and collagen fibirls.

  • PDF

Stress, Nutrition, and Intestinal Immune Responses in Pigs - A Review

  • Lee, In Kyu;Kye, Yoon Chul;Kim, Girak;Kim, Han Wool;Gu, Min Jeong;Umboh, Johnny;Maaruf, Kartini;Kim, Sung Woo;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1075-1082
    • /
    • 2016
  • Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature), nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC) and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

Effect of Antisera from Clostridium difficile-Infected Mice on Toxin-A-Induced Colonic Epithelial Cell Death Signaling

  • Kim, Dae Hong;Lee, Ik Hwan;Nam, Seung Taek;Nam, Hyo Jung;Kang, Jin Ku;Seok, Heon;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.696-703
    • /
    • 2014
  • Clostridium difficile causes mucosal damage and diarrhea by releasing two exotoxins: toxin A and toxin B. C. difficile colitis is associated with alterations in bowel flora and the failure to mount an effective antibody response. The aim of the current study was to investigate whether antitoxin sera prevent toxin-A-induced apoptosis, cytoskeletal disaggregation, cell detachment, and tight junction loss in cultured colonic epithelial cells. Serum samples were isolated from mice that survived a C. difficile infection following antibiotic treatment, and the antitoxin effects of these samples were investigated in toxin-A-exposed HT29 colonic epithelial cells and a toxin-A-induced animal model of gut inflammation. Unchallenged mice did not produce IgG against toxin A, whereas serum (antiserum) from C. difficile-challenged mice showed significant IgG responses against toxin A. Treatment with the antiserum markedly inhibited mucosal damage and inflammation in the toxin-A-treated mouse model. In contrast to control mouse serum, the antiserum also markedly inhibited toxin-A-induced DNA fragmentation, dephosphorylation of paxillin and Epo receptor (EpoR), deacetylation of tubulin, and upregulation of p21(WAF1/CIP1) and p53. Taken together, these results reveal that the generated antitoxin serum has biotherapeutic effects in preventing various C. difficile toxin-A-induced cellular toxicities.

Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation

  • Thomas, Shalom Sara;Cha, Youn-Soo;Kim, Kyung-Ah
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.425-437
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Different fatty acids exert different health benefits. This study investigated the potential protective effects of perilla, olive, and safflower oils on high-fat diet-induced obesity and colon inflammation. MATERIALS/METHODS: Five-week old, C57BL/6J mice were assigned to 5 groups: low-fat diet (LFD), high-fat diet (HFD) and high-fat diet supplemented with-perilla oil (HPO), olive oil (HOO), and safflower oil (HSO). After 16 weeks of the experimental period, the mice were sacrificed, and blood and tissues were collected. The serum was analyzed for obesity- and inflammation-related biomarkers. Gene expression of the biomarkers in the liver, adipose tissue, and colon tissue was analyzed. Micro-computed tomography (CT) analysis was performed one week before sacrifice. RESULTS: Treatment with all the three oils significantly improved obesity-induced increases in body weight, liver weight, and epididymal fat weight as well as serum triglyceride and leptin levels. Treatment with perilla oil (PO) and safflower oil (SO) increased adiponectin levels. The micro-CT analysis revealed that PO and SO reduced abdominal fat volume considerably. The mRNA expression of lipogenic genes was reduced in all the three oilsupplemented groups and PO upregulated lipid oxidation in the liver. Supplementation of oils improved macroscopic score, increased colon length, and decreased serum endotoxin and proinflammatory cytokine levels in the colon. The abundance of Bifidobacteria was increased and that of Enterobacteriaceae was reduced in the PO-supplemented group. All three oils reduced proinflammatory cytokine levels, as indicated by the mRNA expression. In addition, PO increased the expression of tight junction proteins. CONCLUSIONS: Taken together, our data indicate that the three oils exert similar anti-obesity effects. Interestingly, compared with olive oil and SO, PO provides better protection against high-fat diet-induced colon inflammation, suggesting that PO consumption helps manage inflammation-related diseases and provides omega-3 fatty acids needed by the body.

The Effects of Light and Dark Adaptation upon the Compound Eye of Nilaparvata lugens (벼멸구 겹눈의 명적응과 암적응 효과)

  • Young Nam Youn
    • Korean journal of applied entomology
    • /
    • v.34 no.4
    • /
    • pp.334-343
    • /
    • 1995
  • The eyes of Nilaparvata lugens were examined for ultrastructural changes in the light and dark adapted states. Inspection of light microscope sections taken at similar levels of compound eyes from insects kept in light or darkness for periods up to 72 hors revealed some differences between light and dark adapted eyes. Using the electronmicroscope, in light adapted eyes the palisade layer was narrower than that in dark adapted eyes. The pigment granules still formed a ring around the palisade layer in the dark adapted eye but, they did not form a tight circle around the rhabdom. No constant difference was found between the diameters of the microvilli in light and dark adapted eyes. The pigment movements at the junction of the cone and the rhabdom took the effect on varying the pigment aperture at the tip of the cone in front of the rhabdom tip.

  • PDF

THE EFFECT OF A CHITOSAN COATING OF DENTAL IMPLANT ON THE SHOCK ABSORPTION UNDER IMPACT TEST (키토산으로 표면처리된 인공치아의 충격전달에 관한 연구)

  • Kim, Ki-Hong;Lee, Yong-Chan;Cho, Byoung-Ouck;Choi, Kui-Won;Kwon, Ick-Chan;Bae, Tae-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • With the object of providing a temporary artificial periodonal ligament-like membrane around the dental implant, 10 Branemark type implants were coated with commercially available chitosan(Fluka Co., Buchs, Switzerland) which has a molecular weight of 70,000 and 80% deacetylation degree. Once this bioactive hydrophillic polymer(chitosan) contacts with blood or wound fluids, it becomes swollen and penetrates into the adjacent cancellous bone. Thus the interface between implant and surrounding bone is completely filled with chitosan. This tight junction in early healing phase enhances primary stability. The chitosan coated dental implants were implanted into the fresh patella bones from porcine knees, since the thickness of cortical bone is relatively even and their cancellous structure is homogenous. To test the shock absorbing effect, 1mm delta-rogette strain gage was installed behind the implant. The results showed 1. The principal strain peak value directed to the impact of coated implant was 0.064 0.018(p<0.05) and that of uncoated implant was 0.095(0.032 p<0.05). 2. The peak time delay of coated implant was 0.056sec(0.011 p<0.05) and that of uncoated implant was 0.024sec(0.009 p<0.05). It can be reasoned from this results that the chitosan coating has a shock absorbing effect comparable with a temporary artificial periodontal ligament.

  • PDF

Effects of Gleditsiae Spina(GS) on the Polycystic Ovary Induced by Estradiol Valerate in Rats (조각자(皂角刺)가 estradiol valerate로 유발된 백서(白鼠)의 다낭성 난소에 미치는 영향)

  • Gu, Hee-Jun;Cho, Sung-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.2
    • /
    • pp.71-84
    • /
    • 2010
  • Purpose: In the theory of traditional medicine, Glenditsia spina(GS) can resolve carbuncle, relive swelling, dispel wind and destroy parasites. This study was designed to investigate the effects of GS on gene expression of ovarian tissue in polycystic ovary syndrome(PCOS) rats. Methods: In this experiment, female rats injected with a single dose of 2 mg estradiol valerate(EV) and GS was given for 5 weeks. The genetic profile for the effects on ovarian tissue in PCOS rats was measured using microarray technique, and the functional analysis on these genes was conducted. Results: 985 genes were increased in control and restored to normal level in GS group. (B), 733 genes were decreased in control group and restored to normal level in GS group. (F). Metabolic pathways related in B group genes were Graft-versus-host disease, Allograft rejection, Autoimmune thyroid disease, Cytokine-cytokine receptor interaction, Small cell lung cancer, Type I diabetes mellitus. Metabolic pathways related in F group genes were Antigen processing and present, Adipocytokine signalling pathway, Focal adhesion, ECM-receptor interaction, Pancreatic cancer, Notch signalling pathway, Tight junction. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as c-Fos, c-Myc, ABL1 related in B group, MAPK8, RASA1, CALR related in F group that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conclusion: These results suggest possibility of GS as anti-cancer and anti-hyperplasia drug in PCOS. In addition, the present author also suggests that related mechanisms are involved in suppression of proto-oncogene such as c-Fos, c-Myc and ABL1, and in regulation of cell cycle such as RASA1.

Identification of Hepatotoxicity Related Genes Induced by Hexachlorobenzne (HCB) in Human Hepatocellular Carcinoma (HepG2) Cells

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mee;Song, Mi-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • Hexachlorobenzene (HCB) is a bioaccumulative, persistent, and toxic pollutant. HCB is one of the 12 priority of Persistent Organic Pollutants (POPs) intended for global action by the United Nations Environment Program (UNEP) Governing Council. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Some of HCB is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. HCB has effects on various organs such as thyroid, bone, skin, kidneys and blood cells and especially, revealed strong toxicity to liver. In this study, we identified genes related to hepatotoxiciy induced by HCB in human hepatocellular carcinoma (HepG2) cells using microarray and gene ontology (GO) analysis. Through microarray analysis, we identified 96 up- and 617 down-regulated genes changed by more than 1.5-fold by HCB. And after GO analysis, we determined several key pathways which known as related to hepatotoxicity such as metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, and tight junction. Thus, our present study suggests that genes expressed by HCB may provide a clue for hepatotoxic mechanism of HCB and gene expression profiling by toxicogenomic analysis also affords promising opportunities to reveal potential new mechanistic markers of toxicity.

Protective Effect of Lactobacillus fermentum LA12 in an Alcohol-Induced Rat Model of Alcoholic Steatohepatitis

  • Kim, Byoung-Kook;Lee, In-Ock;Tan, Pei-Lei;Eor, Ju-Young;Hwang, Jae-Kwan;Kim, Sae-Hun
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.931-939
    • /
    • 2017
  • Alcoholic liver disease (ALD) is a complex multifaceted disease that involves oxidative stress and inflammation as the key mediators. Despite decades of intensive research, there are no FDA-approved therapies, and/or no effective cure is yet available. Probiotics have received increasing attention in the past few years due to their well-documented gastrointestinal health-promoting effects. Interestingly, emerging studies have suggested that certain probiotics may offer benefits beyond the gut. Lactobacillus fermentum LA12 has been previously demonstrated to play a role in inflammatory-related disease. However, the possible protective effect of L. fermentum LA12 on ALD still remain to be explored. Thus, the aim of this study was to evaluate the possible protective effect of L. fermentum LA12 on alcohol-induced gut barrier dysfunction and liver damage in a rat model of alcoholic steatohepatitis (ASH). Daily oral administration of L. fermentum LA12 in rat model of ASH for four weeks was shown to significantly reduced intestinal nitric oxide production and hyperpermeability. Moreover, small intestinal histological- and qRT-PCR analysis further revealed that L. fermentum LA12 treatment was capable of up-regulating the mRNA expression levels of tight junction proteins, thereby stimulating the restitution of barrier structure and function. Serum and hepatic analyses also revealed that the restoration of epithelial barrier function may prevent the leakage of endotoxin into the blood, subsequently improve liver function and hepatic steatosis in the L. fermentum LA12-treated rats. Altogether, results in this study suggest that L. fermentum LA12 may be used as a dietary adjunct for the prevention and treatment of ASH.

Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

  • Han, Jie;Xu, Yunhe;Yang, Di;Yu, Ning;Bai, Zishan;Bian, Lianquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor ${\alpha}$ (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.