• Title/Summary/Keyword: Tig welding

Search Result 215, Processing Time 0.028 seconds

Welding Fume and Metals Exposure Assessment among Construction Welders (건설현장 용접직종별 용접흄 및 금속류 노출 실태)

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.147-158
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the assessment of exposure to welding fume and heavy metals among construction welders. Methods: Activity-specific personal air samplings(n=206) were carried out at construction sites of three apartment, two office buildings, and two plant buildings using PVC(poly vinyl chloride) filters with personal air samplers. The concentration of fumes and heavy metals were evaluated for five different types of construction welding jobs: general building pipefitter, chemical plant pipefitter, boiler maker, ironworker, metal finishing welder. Results: The concentration of welding fumes was highest among general building pipefitters($4.753mg/m^3$) followed by ironworkers($3.765mg/m^3$), boilermakers($1.384mg/m^3$), metal finishing welders($0.783mg/m^3$), chemical pipefitters($0.710mg/m^3$). Among the different types of welding methods, the concentration of welding fumes was highest with the $CO_2$ welding method($2.08mg/m^3$) followed by SMAW(shield metal arc welding, $1.54mg/m^3$) and TIG(tungsten inert gas, $0.70mg/m^3$). Among the different types of workplace, the concentration of welding fumes was highest in underground workplaces($1.97mg/m^3$) followed by outdoor($0.93mg/m^3$) and indoor(wall opening as $0.87mg/m^3$). Specifically comparing the workplaces of general building welders, the concentration of welding fumes was highest in underground workplaces($7.75mg/m^3$) followed by indoor(wall opening as $2.15mg/m^3$). Conclusions: It was found that construction welders experience a risk of expose to welding hazards at a level exceeding the exposure limits. In particular, for high-risk welding jobs such as general building pipefitters and ironworkers, underground welding work and $CO_2$ welding operations require special occupational health management regarding the use of air supply and exhaust equipment and special safety and health education and fume mask are necessary. In addition, there is a need to establish construction work monitoring systems, health planning and management practices.

Development of welding process to rootpass for U-Groove without gap in pipe 1GR butt welding (파이프 1G 회전 맞대기 용접에서 갭 없는 U-그루브의 루트패스 용접공정 개발)

  • Son, Chang-Hui;Kim, Nam-Gyu;Cho, Sang-Myeong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.40-40
    • /
    • 2010
  • 산업현장에서는 파이프 또는 탱크류의 1GR용접에서 안정적인 이면비드를 가지는 루트패스 용접을 위해 2~3mm의 루트갭을 띄우고 용접봉 또는 필러와이어를 사용하는 TIG용접을 주로 한다. TIG용접은 고품질의 이면비드가 얻어지며, 용접인자의 제어가 쉽다는 장점이 있어 루트패스 용접에 많이 사용되고 있지만, 루트갭을 띄우면 이면비드는 잘 얻어지지만 용착금속량이 많아지게 되어 제작원가가 상승되고, 또한 소모성 와이어를 사용하는 GMAW에 비해 생산성이 낮다. 따라서, 안정적인 이면비드를 가지면서 생산성이 높은 1GR GMAW 루트패스 용접공정의 개발이 요구되지만, 이 경우도 루트갭이 2~3mm로 정해져 있으면 Fit-up공정에서 공수가 많이 필요하므로 근본적으로 루트갭이 없는 그루브에 대한 루트패스 용접이 더 바람직하다. 본 연구에서는 루트면 2.7mm를 가지는 U-그루브의 갭 없는 루트패스 용접에서 안정적인 이면비드가 형성되는 조건을 검토하기 위해 2.7t의 평판에 대하여 경사상진 각을 주고 기초 실험 후, U-그루브 맞대기 용접 실험을 진행하였다. 이 때, 경사상진 각은 용융금속이 중력으로 인해 아크 후방으로 밀리게 되고, 그로 인해 아크가 모재에 직접 닿게 되어 용입이 더 깊게되므로, 이면비드의 형성에 더 유리하다. 두께 2.7t의 연강 시편 2개를 갭 없는 I-그루브 맞대기 이음에서 Ǿ1.2 연강 솔리드 와이어를 사용하여 GMAW용접을 실시하였고, 용접전류, 용접속도, 경사상진 각, 위빙 폭, 위빙 주파수를 변경하여 각 조건에 대한 이면비드를 관찰하였다. 그 결과 경사상진 각 $25^{\circ}$, 전류 200A, 위빙폭 3mm, 위빙주파수 3Hz의 조건에서 안정적인 이면비드를 얻을 수 있었다. 또한, 현장에서 Fit-up중 발생할 수 있는 루트갭의 문제에 대하여 루트갭 1.2mm의 I-그루브 맞대기 용접에서 경사상진 각, 위빙 폭, 위빙 주파수는 갭 없이 실시한 실험에서 얻어진 가장 안정적인 결과를 사용하였고, 용접 전류, 용접 속도를 변경하여 이면비드를 관찰하였다, 그 결과 갭이 없을 때보다 약 80A 낮은 전류 조건인 120A에서 안정적인 이면비드를 얻을 수 있었다. 앞선 실험들을 기초로 하여 U-그루브 맞대기 용접을 실시 하였고, I-그루브 맞대기 용접에서 사용한 조건들과 유사한 용접 전류, 용접 속도에서 안정적인 이면비드를 얻을 수 있었다.

  • PDF

Fracture Mechanics Analysis of the Weldment in Pulley for Belt Conveyor (컨베이어용 풀리의 용접부위에 관한 파괴역학 설계기술 개발)

  • Han, Seung-U;Lee, Hak-Ju;U, Chang-Su;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.23
    • /
    • pp.127-140
    • /
    • 1993
  • The drive pulley, which is employed for loading and unloading raw materials in a steel mill, is usually manufactured by use of various welding processes. In this study the weldment in the pulley, in which TIG and $CO_2$ welding processes are used, has been analyzed from view point of fracture mechanics. Fracture toughness tests have been performed according to ASTM E813. A servo-hydraulic testing machine (10kN) has been employed. Also the crack propagation tests (Mode I) have been performed with compact tension specimen in compliance with ASTM E647. To predict the critical crack size in the weldment, finite element stress analysis for the drive pulley under real operating conditions have been performed. In addition, the residual stresses at the weldment and in heat-affected zone have been obtained by hole drilling method. The planar critical crack size have been predicted for the drive pulley by considering the stress analysis results and the residual stresses due to welding process. For the drive pulley considered in this study, it has been concluded that the most important factor in determining the critical crack size is the welding residual stress in the transverse direction. Also the effect of stress concentration at the root of the weldment have been noticeable. For the planar crack, the fatigue crack growth life from an initial crack size of 2mm to the critical crack size obtained as in the above have been predicted. The predicted lives were between 55, 900 and 72, 000 cycles depending on the shape of the elliptical crack. The predicted lives were in fairly good agreement for the drive pulley considered in this study.

  • PDF

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

The Effect of Weld heat input energy to mechanical properties of Titanium alloys (용접 입열량에 따른 티타늄 합금의 기계적 성질 평가에 대한 연구)

  • Yi, Hui-Jun;Lee, Jung-Soo;Yang, Hae-Jin;Oh, Myung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.476-479
    • /
    • 2011
  • 티타늄 합금은 높은 내부식성, 우수한 피로 수명과 무게비에 비해 높은 강도를 가진다는 우수성으로 인해 항공기 부품과 화학 공업 분야등에 다양하게 사용되고 있다. 이번 연구에서는 Ti-3Al-2.5V 합금 TIG 용접부에 대하여 용접부 인성과 기계적 성질에 영향을 주는 가장 중요한 인자인 용접 입열에 대한 영향을 평가하고자 하였다. 이에 입열조건에 대한 용접부에 대한 강도, 충격 인성과 노치 인성을 평가하였으며 적정 입열 조건에서 강도와 인성이 우수한 용접부를 얻을 수 있다는 것을 확인하였다.

  • PDF

An Experimental Study on Block Shear Fracture of Base Metal in Ferritic Stainless Steel Welded Connection (페라이트계 스테인리스강 용접접합부의 모재 블록전단파단에 관한 실험적 연구)

  • Kim, Tae Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.303-312
    • /
    • 2016
  • Many researches on the application of stainless steels as structural steels have been performed thanks to their material properties such as superior ductility and corrosion resistance. Ferritic stainless steels(STS430) with little or no nickel have been used increasingly in building structure because it is inexpensive compared to austenitic stainless steels(STS304) with nickel, but provide performances similar to the austenitic stainless steel. This paper deals with block shear fracture behavior of base metal in stainless steel welded connection. Although the block shear fracture behavior for welded connection due to stress triaxiality is different from that of bolted connection, the block shear strength of welded connection in current design specifications has been predicted based on that of bolted connection. The main parameters are weld length and welding process(Arc and TIG welds). The ultimate strengths of TIG welded specimens were higher than those of arc welded specimens and current design predictions by AISC, EC3 etc. were compared with test strengths.

Welding Process Development for Pitting Resistance Improvement on Super Duplex STS welds (슈퍼 듀플렉스STS 용접부의 내공식성 향상을 위한 용접공정 개발)

  • Byun, Jae-Gyu;Jun, Jae-Ho;Kim, Seung-Won;Lee, Jae-Hyeong;Ahn, Soon-Tae;Park, Cheol-Gyu;Jang, Jong-Hun;Jung, Byong-Ho;Cho, Sang-Myung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.173-173
    • /
    • 2012
  • Duplex STS는 응력부식 저항이 큰 페라이트상과 우수한 내식성을 제공하는 오스테나이트상이 미세하게 1:1로 결합하여 강도가 오스테나이트 STS 보다 최소 1.7배 이상 높을 뿐 아니라 공식(pitting)과 응력부식 저항성이 우수해 최근에 주목받고 있는 고내식 고강도 재료이다. STS의 내식성을 평가하는 여러 지수 중 Pitting에 대한 내식성을 평가하는 지수로서 PREN (Pitting Resistance Equivalent Number)이 있다. PREN =%Cr + 3.3%(Mo + 0.5%W) + 16%N PREN이 30 이상이면 해안지역에서 사용가능하나, PREN이 40 이상인 경우에는 원자력발전소, 탈황 설비, 해수설비 및 화학Plant 등 고내식 환경에서 주로 사용가능하다. PREN이 40 이상인 Super Duplex STS은 다량의 Mo와 N을 첨가하여 만든 제품으로, 최근 10여 년 동안 해수 냉각 설비, 해수 담수화 설비, 탈황 설비, 석유화학 설비 및 원전용 CASK 등의 다양한 분야에 그 사용량이 꾸준히 증가하고 있는 상황이다. 본 연구에서는 Super Duplex STS의 TIG용접에서 실드가스 중의 $N_2$의 첨가가 PREN에 미치는 영향을 검토하였다. 실드가스 중 $N_2$가 용접금속으로 침입하는 메커니즘을 규명하고, 용접조건 변화에 따른 용접금속 내 N의 함량을 측정하여 PREN을 계산하고, 용접금속의 기계적 특성과 미세조직을 검토하였다.

  • PDF

Evaluation of Microscopic Damage to TIG Welded Carbon Steel using Acoustic Emission and Ultrasonic Test (음향방출과 초음파를 이용한 TIG 용접탄소강의 미시적 손상평가)

  • Lee, Joon-Hyun;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.5-10
    • /
    • 2012
  • In this study, carbon steel (A53) is used as the material for the pipes in a marine plant and ship industry. Welds are necessary to join the carbon steel, and the effect of this welding on the properties of the carbon steel has been studied by many researchers. In this study, the dynamic behavior of welded carbon steel was studied using an acoustic emission (AE) technique, which is a nondestructive test. There are numerous AE parameters that can be used to analyze the damage behavior of carbon steel by external loading. The AE parameters of energy, cumulative count, amplitude, and AE event were used, and each parameter was differentiated according to the degree of damage to the carbon steel. The energy showed a high level at the elastic range of the load curve, while the amplitude had the highest value at the hardening region. The cumulative count showed a growth tendency similar to the loading curve. In addition, an ultrasonic technique and hardness test were applied to evaluate the mechanical properties according to the base zone, HAZ region, and weld zone of the weld specimen. The velocity and attenuation ratio showed little change between zones, and an evaluation of the ultrasonic waves on each zone of the specimen was found to be a useful method to clarify the mechanical properties of the carbon steel.

A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel (Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가)

  • Kim, Deok-Geun;Cho, Dong-Pil;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.

Improvement of Wear Resistance of Aluminum by Metal-Ceramic Particle Composite Layer (알루미늄표면에 금속-세라믹입자 복합첨가에 의한 내마모성개선)

  • ;;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.96-104
    • /
    • 1997
  • The present study was aimed to correlate the microstructure and the hardness as well as the wear resistance of the metal-ceramic particulated composite layer on the pure Al plate. The composite layers were constructed by the addition of TiC particles on the surface of Al-Cu alloyed layers by PTA overlaying process. Initially, the Al-Cu alloyed layers were achieved by the deposition of Al-(25 ~ 48%) Cu alloys on the pure Al plate by TIG process. It was revealed that TiC particles were uniformly dispersed without any reaction with matrix in the composite layer. The volume fraction of TiC particles (TiC V F) increased from 12% to 55% with increasing the number of pass of composite layer. Hardnesses of (Al-48%Cu + TiC (3&4layers)) composite layer were Hv450 and Hv560, respectively, due to the increase of TiC V/F. Hardnesses of (Al-Cu + TiC) composite layers decreased gradually with insreasing temperature from 100$^{\circ}$C to 400$^{\circ}$C, and hardnesses at 400$^{\circ}$C were then reached to 1/5 - 1/10 of room temperature hardness depending on the construction of composite layers. The Specific wear of (Al + Tic) layer and Al-48%Cu alloyed layer decreased to 1/10 of the of pure Al, while the specific wear of (Al-48%Cu + TiC (4 layers)) composite layer exhibited 1/15 of that of steel such as SS400 and STS304.

  • PDF