• Title/Summary/Keyword: Tie Bar

Search Result 61, Processing Time 0.027 seconds

Seismic Performance of High-Strength Concrete Columns

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Kim Sun-Woo;Han Min-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.41-44
    • /
    • 2004
  • This experimental investigation was conducted to examine the behaviour of eight one-third scale columns made of high-strength concrete (HSC). The columns were subjected to a constant axial load corresponding to 30 per cent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength. Columns with 42 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. Relationships between the calculated damage index and the observed damage such as initial crack, spalling of concrete, buckling of longitudinal bar, and crushing of concrete are propose.

  • PDF

Determination of structural performance of 3D steel pipe rack suspended scaffolding systems

  • Arslan, Guray;Sevim, Baris;Bekiroglu, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.671-681
    • /
    • 2017
  • This study investigates the structural performance of 3D steel pipe rack suspended scaffolding systems. For the purpose, a standard full scale 3D steel pipe rack suspended scaffolding system considering two frames, two plane trusses, purlins and wooden floor is constructed in the laboratory. A developed load transmission system was placed in these experimental systems to distribute single loads to the center of a specific area in a step-by-step manner using a load jack. After each load increment, the displacements are measured by means of linear variable differential transducers placed in several critical points of the system. The tests are repeated for five different system conditions to determine the structural performance. The means of system conditions is the numbers of the tie bars which are used to connect plane trusses under level. Finite elements models of the 3D steel pipe rack suspended scaffolding systems considering different systems conditions are constituted using SAP2000 software to support the experimental tests and to use the models in future studies. Each of models including load transmission platform is analyzed under a single loading and the displacements are obtained. In addition, to calibrate the numerical models some uncertain parameters such as elasticity modulus of wooden floor and connection rigidity of purlins to plane trusses are assessed experimentally. The results of this work demonstrate that when increasing numbers of tie bars the displacement values are decreased. Also the results obtained from developed numerical models have harmony with those of experimental. In addition, the scaffolding system with two tie bars at the beginning and at the end of the plane truss has the optimum structural performance compared the results obtained for other scaffolding system conditions.

Bearing Strength of Concrete Column and Steel Beam Composite Joints (콘크리트 기둥과 철골 보 합성골조 접합부에서의 지압강도)

  • Kim, Byong-Kook;Lee, Won-Kyu;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.417-424
    • /
    • 2003
  • A bearing failure in RCS(Reinforced Concrete Column and Steel Beam) system is recognized as one of the distinct joint failure modes for the composite frames. Vertical and transverse reinforcement in addition to concrete are effective for better transfer of vortical forces through concrete bearing. To examine the effect of the vertical bars, tie bars, a U-type detail developed in this study and concrete confinement, local bearing tests were conducted using 22 small-scale concrete block specimens. Test results show that vertical reinforcement and tie bars mainly contribute to the bearing capacity. However larger amounts of tie reinforcement are required than those recommend from ASCE guidelines, to apply the nominal concrete strength as 2 $f_{ck}$ over the bearing area. Cross ties are proved to be highly effective for resisting the vertical forces. Maximum bearing strength can be increased upto 2.5 $f_{ck}$ . An accurate prediction model for bearing strength is proposed for better design of the composite Joint.

Study on Strengthening of Reinforced Concrete Columns by Central Element (중앙 보강재에 의한 철근콘크리트 기둥의 내진 강화에 관한 연구)

  • 노영곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.517-520
    • /
    • 1999
  • In this study, the problem of strengthening of reinforced concrete (RC) columns by a central steel section with minimum amount is taken up. For this purpose, RC columns with central reinforcing elements such as a steel bar, a steel H section and a steel pipe were taken up. To certify the effect of this way of reinforcing, experimental study using specimens of RC columns of shear span ratio of 2.5 was carried out. The variables which are considered to affect the behavior of RC columns subjected to axial load and cyclic shear load are the magnitude of axial load, tie ratio and main bar ratio. As the results of this study, the effect of a central reinforcing element for making higher the earthquake resistant properties of RC columns were observed.

  • PDF

The Strength of Concentrically Loaded R/C Columns with Various Hoop Anchor Types (중심축력을 받는 R/C기둥의 횡보강근 정착형태에 따른 내력에 관한 연구)

  • Lee Woo-Jin;Kim Min-Soo;Lee Dae-kyo;Seo Soo-Yeon;Yoon Seung-Joe
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.67-70
    • /
    • 2005
  • In this study, an experimental investigation of the strength of R/C columns with 300mm square sections confined by head anchorage bar is presented. This initial phase of research considers only axial loading and consists of a total of 7 column tests. The main variables are distance and anchorage type of transverse reinforcement such as standard hooks and headed bar. The purpose of this study is to investigate the confinement effect and strength increment by head and to propose the confinement model for column using the head at end of lateral tie. Also, the test results for ultimate strength and strength gain factor of columns in this study and previous study is compared with the existing analytical models. Based on the test results, the Saatcioglu's model estimates confinement effects was closed to experimental value and the developed analytical approach considered the head was capable of predicting the strength gain factor results with a resonable accuracy.

  • PDF

Investigation of the Feasibility of a Bus-bar coupled SFCL in the 154 kV KEPCO Grid (154 kV 초전도 한류기 모선연계 적용 연구)

  • 윤용범;현옥배;황시돌;김혜림
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.291-293
    • /
    • 2003
  • Applicability and economical feasibility of a Superconducting Fault Current Limiter (SFCL) have been investigated using the PSS/E simulation for a bus bar coupling at the real 154 ㎸ KEPCO power grid near Seoul. For the investigated substation, the maximum fault current exceeds the interruption rating of 4 circuit breakers (CB) out of 9 installed in the substation. The simulation showed that a SFCL installed in the bus tie position effectively limits the fault currents to save 4 CBs, which are to be replaced by ones of gloater interruption rating, otherwise. We suggest that the optimum resistance of the SFCL be 10 Ohm for the given grid.

  • PDF

Construction Issues and Design Procedure for Transverse Steel in Continuously Reinforced Concrete Pavement (CRCP) (연속철근콘크리트 포장의 횡방향 철근 설계방법 및 시공관련 이슈 검토)

  • Choi, Pangil;Won, Moon Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES: The objective of this study is to evaluate construction issues and design for transverse steel in continuously reinforced concrete pavement(CRCP). METHODS : The first continuously reinforced concrete pavement(CRCP) design procedure appeared in the 1972 edition of the "AASHTO Interim Guide for Design of Pavement Structures", which was published in 1981 with Chapter 3 "Guide for the Design of Rigid Pavement" revised. A theory that was accepted at that time for the analysis of steel stress in concrete pavement, called subgrade drag theory(SGDT), was utilized for the design of reinforcement of CRCP - tie bar design and transverse steel design - in the aforementioned AASHTO Interim Guide. However SGDT has severe limitations due to simple assumptions made in the development of the theory. As a result, any design procedures for reinforcement utilizing SGDT may have intrinsic flaws and limitations. In this paper, CRCP design procedure for transverse steel was introduced and the limitations of assumptions for SGDT were evaluated based on various field testing. RESULTS: Various field tests were conducted to evaluate whether the assumptions of SGDT are reasonable or not. Test results show that 1) temperature variations exist along the concrete slab depth, 2) very little stress in transverse steel, and 3) warping and curling in concrete slab from the field test results. As a result, it is clearly revealed out that the assumptions of SGDT are not valid, and transverse steel and tie bar designs should be based on more reasonable theories. CONCLUSIONS : Since longitudinal joint is provided at 4.1-m spacing in Korea, as long as joint saw-cut is made in accordance with specification requirements, the probability of full-depth longitudinal cracking is extremely small. Hence, for transverse steel, the design should be based on the premise that its function is to keep the longitudinal steel at the correct locations. If longitudinal steel can be placed at the correct locations within tolerance limits, transverse steel is no longer needed.

Construction and Design Related Issues in Road Widening for Concrete Pavement (콘크리트포장 확장접속부의 시공 및 설계상의 문제점 분석)

  • Yang, Sung-Chul
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.25-36
    • /
    • 2006
  • Through field surveys and evaluation on several widened concrete pavements, issues on construction and design related problems are broken down into three categories to be discussed; poor smoothness, influence of traffic vibration on concrete curing, and poor connection to the existing pavement. There are many places where about 100mm only of the marginal strip is removed and where defects such as widening and faulting are observed. Also cracks arise again from the patched areas due to stress concentration near the joint. Roughness on the widened concrete pavement was evaluated and there are some stations where the smoothness limit is over passed. For design consideration, shortage of the required force in the tie-bar is expected in case of road widening specially from 3 lanes to 4 lanes. Finally the average pull-out force of specimens made from the current practice was about 57% of the required force. New connecting methods were suggested in this study.

  • PDF

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.