• Title/Summary/Keyword: Tide-induced residual current

Search Result 19, Processing Time 0.023 seconds

Characteristics of Tidal Current and Tidal Residual Current in the Archipelago Around Aphae Island in the Southwestern Waters of Korea (한국 서남해 압해도 주변 다도해역의 조류 및 조석잔차류 분포)

  • Choo, Hyo-Sang;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.179-187
    • /
    • 2018
  • In order to understand the flow of currents around Aphae Island and the surrounding Archipelago, the numerical model experiments on tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have a reversing form and flow along the narrow channels of the archipelago. During periods of flood, currents flow from the west of Hwawon Peninsula to the archipelago to the northwest together with the currents flowing from the channels at Palgeum Island to Amtae Island and Amtae Island to Jeung Island. Ebb currents flow from the northwest archipelago to the channel of Amtae Island and Jeung Island as well as Amtae Island to Palgeum Island, further flowing south between Palgeum Island and Hwawon Peninsula. Flood currents are separated from east and west at the southern coast of Aphae Island, but flow south from both the west and east of Aphae Island to the channel found between Palgeum Island and Hwawon Peninsula at ebb. Flow speed is high between Amtae Island and Aphae Island where the flows meet and join. Lee wakes or topographical eddies are formed around the islands due to the high speed of the currents flowing along the narrow channel in the archipelago, manifesting as a tide-induced residual current. A weak cyclonic wake and anti-cyclonic eddy both exist at the west and northwestern coast of Aphae Island individually. The speed of the tide-induced residual current become slow on account of the wide littoral zone at exists around Aphae Island.

Numerical Simulation in relation with Coastal Current and Stratification of Water at the Semi-enclosed Estuary (반폐쇄하구에서의 유동 및 성충구조에 관한 시뮬레이션)

  • Lee, Woo-Chul;Lee, Joong-Woo;Park, Dong-Jin
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.565-572
    • /
    • 2004
  • Residual current plays more important role than the tidal current for long-term material transport in coastal areas. The main component of residual current is tide-induced residual current. Otherwise, wind driven current and buoyancy-driven current are important components which change the residual current. To clarify the characteristic of coastal current, application of a three -dimensional model is necessary. This study focuses on clarifying the stratified systems of coastal water affected by freshwater runoff from a river and analyzes the structure of current at Ulsan bay by applying a three-dimensional buoyancy-driven current model. According to the result of “Ulsan bay” study, it shows that the surface layer in semi-enclosed estuaries, which affected by freshwater runoff. has flows going out, and the bottom layer has flows coming in. Besides when the wind blows toward inside of the bay, the surface layer has flows coming in and the bottom layer has flows going out as compensation flows for the surface circulation. The results of simulation could be applicable to examine vertical upwelling, which might be caused by construction of artificial fishing reef to build aqua farm, submerged breakwater to control coastal sediment, and the formulation of oceanic ridge, or a basic study on application to the usage of deep water.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Numerical experiments for the changes of currents by reclamation of land in Kwangyang Bay (매립으로 인한 광양만의 유동변화 수치실험)

  • 추효상
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.637-650
    • /
    • 2002
  • This study presents an investigation of the changes of the currents in Kwangyang Bay due to the construction of harbor, reclamation and coastal developments. Currents were simulated by the numerical experiments with a diagnostic multi-level model and using the seasonal oceanographic data of temperature, salinity and ocean current. The values of kinetic and potential energies for the currents were calculated in cases of three topographical changes; before coastal developments, the existing state and after completion of the development project in Kwangyang Bay. The changes of currents due to the coastal developments are as follow; Kinetic energies of tide induced residual currents and wind driven currents decreased by 35~40 percent and 5 percent respectively, however those of density currents increased by 10 percent since the decrease of the coastal areas. Kinetic energy of residual currents including tide induced residual currents, density currents and wind driven currents reduced by 10 percent compared with before the coastal developments. Decrease of current velocity was greatest in summer. Therefore, in summer it was assumed that the Kwangyang Bay is more easily polluted by stratification and decrease of residual current than before the coastal developments carried out.

A fine grid two-dimensional $M_2$ tidal model of the East China Sea (동지나해의 세격자 2차원 $M_2$조석모형)

  • 최병호
    • Water for future
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 1988
  • The previous two-dimensional non-linear tidal model of the East China Sea(Choi, 1980) has been further refined to resolve the flow over the ocntinental shelf in more detail. The mesh resolution of the present finite-difference grid system used is 4 minutes latitude by 5 minutes longitude over the entire shelf. The developed fine grid two-dimensional model was utilized to reproduce the $M_2$ tide and $M_4$ tide for the East China Sea contnental shelf. There is general agreement between the model results and the current observation made in the Eastern Yellow Sea, which supports the calculated tidal regime over the shelf. Some preliminary results on maximum bottom stress and tidally-induced residual current were also examined and discussed.

  • PDF

Characteristics of Tide-induced Flow and its Effect on Pollutant Patterns Near the Ocean Outfall of Wastewater Treatment Plants in Jeju Island in Late Spring (제주도 하수처리장 해양방류구 인근해역의 늦은 봄철 조류 특성과 조석잔차류에 의한 오염물질의 분포 특성)

  • KIM, JUN-TECK;HONG, JI-SEOK;MOON, JAE-HONG;KIM, SANG-HYUN;KIM, TAE-HOON;KIM, SOO-KANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.63-81
    • /
    • 2021
  • In this study, we investigated the tide-induced flow patterns near the ocean outfall of the Jeju and Bomok Wastewater Treatment Plants (WTP) in Jeju Island by using measurements of Acoustic Doppler Current Meter (ADCP) and a numerical experiment with inserting passive tracer into a regional ocean model. In late spring of 2018, the ADCP measurements showed that tidal currents dominate the flow patterns as compared to the non-tidal components in the outfall regions. According to harmonic analysis, the dominant type of tides is mixed of diurnal and semi-diurnal but predominantly semidiurnal, showing stronger oscillations in the Jeju WTP than those in the Bomok WTP. The tidal currents oscillate parallel to the isobath in both regions, but the rotating direction is different each other: an anti-clockwise direction in the Jeju WTP and a clockwise in the Bomok WTP. Of particular interest is the finding that the residual current mainly flows toward the coastline across the isobath, especially at the outfall of the Bomok WTP. Our model successfully captures the features of tidal currents observed near the outfall in both regions and indicates possibly high persistent pollutant accumulation along the coasts of Bomok.

Fluctuation of Tidal Front and Expansion of Cold Water Region in the Southwestern Sea of Korea (한국 남서해역에서 조석전선의 변동과 저수온역 확장기작)

  • Jeong, Hee-Dong;Kwoun, Chul-Hui;Kim, Sang-Woo;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2009
  • The appearance and variation of cold water area and its expansion mechanism of tidal front in the south western coast of Korea in summer were studied on the basis of oceanographic data(1966-1995), satellite images from NOAA and SeaWiFs and numerical model. Cold water appearance in southwestern field of Jindo was due to the vertical mixing by strong tidal current. Tidal front where horizontal gradient of water temperature was more than $0.3^{\circ}C$/km parallels to contours of H/$U^3$ parameter 2.0~2.5 and the outer boundary of cold water region corresponds with contours of the parameter 2.5~3.0 in the southwestern sea of Korea during the period between neap and spring tides. The position replacement of tidal front formed in the study ares varies in a range of 25~75km and cold water region extends about 90km. These suggest that the magnitude of variation of frontal position and cold water area was proportionate to the tidal current during lunar tidal cycle. Moreover, it was estimated that the southwestward expansion of cold water region was derived from the southwestward tide-induced residual currents with speed more than 10cm/s.

  • PDF

Numerical Model Experiments on the Tidal Current Variations Due to the Bridge Piers Construction near the Straits of Narodo Islands (교각건설로 인한 나로도 협수로 부근해역에서의 조류변화 수치모형 실험)

  • LEE Moon-Ock
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.47-58
    • /
    • 1994
  • Field observation and numerical experiments with a two-dimensional depth-integrated model were undertaken in order to investigate some of the effects on the flow structure resulting from the construction of a bridge connecting Kohung Peninsula and the Narodo Islands on the southern coast of Korea. Tidal currents passing through the straits between the Narodo Islands showed that, although the phase lagged one hour behind that passing through the strait between Kohung Peninsula and Naenarodo Island, it still kept strong flows of more than 80cm/sec near the bottom. The seawater temperature and salinity within the study area seemed to be higher southward but uniform vertically. The results of the drogue experiments in the straits between the Narodo Islands showed that the drogues moved northward of Sayangdo in the early part of the flood tide, but southward in the late part of the flood tide and finally stopped a mile from the east coast of Surakdo. On the other hand, the numerical computation showed that the flow structures after construction of the bridge piers were basically in line with those before construction of the bridge piers, except for the slight variations of velocities in the vicinity of the bridge piers. A large scale clockwise circulation has been confirmed in the south area of Namsungri of Kohung Peninsula from the computational results of tide-induced residual currents. Referring to these computational results, the impact category on the flow structures due to the bridge piers construction has been estimated to be within around 2km. The results were in good agreement with the field observations.

  • PDF

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.