• Title/Summary/Keyword: Tide and tidal current

Search Result 239, Processing Time 0.026 seconds

Characteristics of tidal current and tidal induced residual current in the channel between Geumo Island and An Island in the southern waters of Korea (금오도-안도 협수로 해역의 조류 및 조석잔차류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.214-227
    • /
    • 2021
  • The distribution of tidal current and tidal induced residual current, topographical eddies and tidal residual circulation in the waters surrounding the Geumo Island-An Island channel were identified through numerical model experiments and vorticity balance analysis. Tidal current flows southwest at flood and northeast at ebb along the channel. The maximum flow velocity was about 100-150 cm/s in neap and spring tide. During the flood current in the neap tide, clockwise small eddies were formed in the waters west of Sobu Island and southwest of Daebu Island, and a more grown eddy was formed in the southern waters of Geumo Island in the spring tide. A small eddy that existed in the western waters of Chosam Island during the ebb in neap tide appeared to be a more grown topographical eddy in the northeastern waters of Chosam Island in spring tide. Tidal ellipses were generally reciprocating and were almost straight in the channel. These topographical eddies are made of vorticity caused by coastal friction when tidal flow passes through the channel. They gradually grow in size as they are transported and accumulated at the end of the channel. When the current becomes stronger, the topographic eddies move, settle, spread to the outer sea and grow as a counterclockwise or clockwise tidal residual circulation depending on the surrounding terrain. In the waters surrounding the channel, there were counterclockwise small tidal residual circulations in the central part of the channel, clockwise from the northeast end of the channel to northwest inner bay of An Island, and clockwise and counterclockwise between Daebu Island and An Island. The circulation flow rate was up to 20-30 cm/s. In the future, it is necessary to conduct an experimental study to understand the growth process of the tidal residual circulation in more detail due to the convergence and divergence of seawater around the channel.

Tide and tidal current around the sea route of Jinhae and Masan passages (진해 및 마산항로 주변해역의 조석·조류특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • In order to understand the tide and current around the sea route of Jinhae and Masan passages, tide measurement and 2D numerical model experiments of tidal current and residual flow were carried out. Tide is composed of 84% of semi-diurnal tide, 11% of diurnal tide and 4% of shallow water tide, respectively. Phase lags of the major components for the tide around the study area have little differences. The flows are reversing on the whole, but have rotational form around Jamdo Island, south of Masan passage in spring tide and Ungdo Island, north of Masan passage in middle and neap tide. Current flows the speed of 50 cm/s in the sea areas near small islands, 5 cm/s in Jinhae harbor, Hangam bay and near Jinhae industrial complex and 20-30 cm/s in Jinhae passage, Budo channel and Masan passage. Tide-induced topographical eddies are formed near small islands, but few eddies exist and the flow rate of less than 5 cm/s tidal residual current formed in Jinhae and Masan passages. The flows in Jinhae and Masan passage give a good condition for a passage into Jinhae and Masan harbor.

Critical Limits of Commercial Diving on the Construction of Tidal Current Power in Jangjuk Channel (장죽수로 조류발전건설시 작업특성에 따른 산업잠수 작업한계)

  • Kim, Won-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.733-742
    • /
    • 2013
  • The Korea has significant tidal current energy resources, but it is so hard to work underwater for tidal turbine installation. Therefore commercial diving work is very important for tidal current generator. Also, Jangjuk channel is vary famous as proper area to generate tidal current energy. Nevertheless, no one is studied about characteristics of commercial diving works with installation of tidal current generator. The purpose of this study is to introduce commercial diving with work types and investigate critical limits of diving working under the conditions, which are working only to minutes at slack tide during the neap tide. As the results, work types are five as like mooring installation, OMAS(Offshore Maintenance Access System), support structure installation, cable and turbine installation. Here, the original construction period is expected about 4 months, but the construction take 18 months to complete. The cause of extends construction period is insufficiency of researching tidal current conditions at the site and ignorance of slack tide which need to secure diving working time. Total diving working times are 110th during 18 months, the highest percentage of diving times is turbine installation about 43.6 %, and cable, mooring installation and support structure construction are 27.3 %, 15.5 %, 13.6 %, respectively. On the basis of this study, estimation of times of commercial diving is possible with work types of tidal current power, and has a significance as basic data to determining construction period.

Environmental Factors and Catch Fluctuation of Set Net Grounds in the Coastal Waters of Yeosu - 2 . Sea Water Circulation in the Vicinity of Set Net Ground - (여수연안 정치망어장의 환경요인과 어황 변동에 관한 연구 - 2 . 어장주변 해역의 해수유동 -)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.142-149
    • /
    • 1994
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu. The current in the vicinity of set net grounds was observed by drogue and current meter in 1990 and 1992. The results obtained are summarized as follows: The direction of tidal current at the north enterance of Yeosu bay was southerly in ebb and northwesterly in flood without the distiction of the neap tide and the spring tide. In spring tide the maximum Velocity of the tidal current was 68 cm/sec in ebb and 66 cm/sec in flood. In neap tide the maximum velocity of the tidal current was 37 cm/sec in ebb and 35 cm/sec in flood. And so the direction of residual current was the south ward mainly and 21 cm/sec. The direction of tidal current at set net fishing grounds was southwesterly in ebb and westerly or northwesterly in flood. Regardless of the distinction of neap and spring. The maximum velocity of the current in spring tide was 50 cm/sec in ebb and 40 cm/sec in flood and that in neap was 28 cm/sec in ebb and 25 cm/sec in flood. In spring tide the speed vector along the major axis of semidiurnal tide component was three times as large as diurnal tide. In neap tide, however, the speed vector was about 50% less then that in spring tide, and the semidiurnal tide and diurnal tide were equal in the size of current ellipse and the direction of major axis. The sea area had a southwesterly residual current. 11 cm/sec in spring tide and 7 cm/sec in neap tide. According to the result of drogue tracking, the vicinity of set net fishing ground had a southerly residual current which formed in Yeosu Bay and a weak westerly residual current toward Dolsando from Namhedo. Therefore, set net fishing ground in coastal water of Yeosu was distributed in boundary of inner water which formed from Seamjin river and offshore water supplied from the vicinity of Sorido and Yochido.

  • PDF

A Method for Improvement of Tide and Tidal Current Prediction Accuracy (조위 및 조류 예측 정확도의 개선 방법)

  • Jung, Tae-Sung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.234-240
    • /
    • 2010
  • In order to predict coastal environmental changes caused by coastal development and effectively manage marine environment, the exact information about water level changes and hydrodynamic circulation is essential. However, most of the environmental impact assessment has been using only limited tidal constituents in the numerical tide model to predict the real tide and tidal currents caused by the synthesis of many other tidal constituents, which causes an error in the environmental impact assessment. In this study, a method, which uses the limited tidal constituents at the offshore open boundaries and the observed tide at the inner or nearby point to predict the real tide in the model domain accurately, is suggested. Tidal and tidal currents predicted by the suggested method agreed well with the observations.

Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok (울돌목 조류발전의 연안물리적 관점에서의 고찰)

  • Yum Ki-Dai;Lee Kwang Soo;Park Jin Soon;Kang Sok Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.516-519
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year. and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current. as well as modeling work in order to investigate the tide and tidal current regime change in relation to the tidal current power plant (TCPP) construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok (울돌목 조류발전의 연안물리적 관점에서의 고찰)

  • Kang Sok Kuh;Yum Ki-Dai;Lee Kwang Soo;Park Jin Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.73-78
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year, and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current, as well as modeling work in order to investigate the tide and tidal current regime change In relation to the tidal current power plant [TCPP] construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

The Characteristics of Tidal Current and Water Mass in the Narrow Channel 1. Tidal Current and Water mass in the Chungmu Channel (협수로의 수리 특성과 수괴구조 1. 충무수로의 조류와 수괴구조)

  • Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.13 no.2
    • /
    • pp.168-177
    • /
    • 2001
  • The flow pattern and water mass structure in the Chungmu channel were investigated using the field observations during June and July, 2001. The currents in the channel may be regarded as a hydraulic current decided by difference of tide levels between two sides in the channel. The strongest current in the channel occurs around in high water and low water. The coefficient C to be determined the characteristics of velocity in the channel was obtained from an equation, $u=C{\sqrt{2gh}}$ and ranges from 0.37 to 0.65 in the Chungmu Channel at the spring tide and from 0.23 to 0.37 at the neap tide. Eastward tidal transport is usually larger than that of westward transport in Chungmu the Channel. Sea water exchange rates are 39.2% in spring tide and 20.5% in neap tide respectively. The water mass structure in the channel is changed by the speed of the tidal current. The water mass is well mixed at the high water when the current is strong and is stratified at slack water when the current is weak.

  • PDF

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Tide And Tidal Current In The Estuary Of The Nakdong River (낙동강 하구의 조석과 유동)

  • Ryu, Cheong-ro;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 1979
  • Tidal waves and the fluctuation of current are studied by use of observed data on tidal level, flow velocity and river discharge in the estuarine region of the Nakdong River. Observed data on the tidal level at five stations are used to obtain the fluctuation of amplitude and phase of tides, and the change of the wave speed versus distance from the river mouth. Comnining these tidal data with the vertical distribution of horizontal velocity data, some characteristics of the periodic tidal flow are deduced: (1)Diminishing rates of the tidal amplitude ratio η / η$\_$0/ at high tide were 0.058η$\_$0H/ /Km at neap tides. The constant of phase change, K, was 0.035rad/km. (2)While proceeding landward, the shape of the tidal wave changes from symmetrical to asymmetrical. The traveling speed of the tidal wave crest was estimated to be 3.6∼5.2m/sec, while that of the tidal wave trough was 2.4∼ 3.5m/sec. (3)The flowing speed of the water varies periodically in accordance with the tidal period. The maximum speed of landward flow appeared approximately at two hours before the high tide, while that of seaward flow at two hours before the low tide. (4)The upstream boundary is deduced approximately to be 50km at spring tide and 44km at neap tide from the tidal velocity decreasing. the tidal influence area is estimated approximately to be 65km from the tidal amplitude damping.

  • PDF