• Title/Summary/Keyword: Tide and Current

Search Result 351, Processing Time 0.025 seconds

A Study on the Transport of Anchovy Engraulis japornicus Egg-larvae in the South Sea of Korea (한국 남해안의 멸치(Engraulis japornicus) 난자치어 수송에 관한 연구)

  • Kim, Dong-Sun;Bae, Sang-Wan
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1403-1415
    • /
    • 2011
  • To understand the transport of anchovy egg-larvae, an integrated model consisting of a hydrodynamic model and a three-dimensional Lagrangian diffusion model was used for the anchovy Engraulis japornicus egg-larvae trace. Fist, in order to determine the circulation characteristics of the South Sea of Korea, residual flow according to tide, density and wind effect was investigated. In offshore regions, tide-induced residual current tends to flow eastward during the spring tide and westward during the neap tide. Residual flow is irregular due to the bottom topography in the coastal area. No special tendency was apparent in the open sea. Especially, the flow in the offshore regions showed results similar to that of the Tsushima Warm Current. The transport of anchovy egg-larvae is decided the physical properties of sea water. It is estimated that anchovy eggs spawned near the Jeju Island travels offshore, rather than to coastal areas, and grow in the front area between the coastal sea and offshore regions.

The Variation of Current by the Building of Artificial Upwelling Structure ( I ) (인공용승구조물 설치에 의한 유동변화 ( I ))

  • Kim, Dong-Sun;Hwang, Suk-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.301-306
    • /
    • 2006
  • In order to estimate the characteristics of water movements around artificial upwelling structure, current measurements were carried out along lines E-W and S-N on May 4th(neap tide} and May 30th(spring tide), 2006. In the study area, southeastward flow was dominant during the field observations, and the pattern of water movement in the upper layer above 30m depth was different from that in the lower layer below 30m depth Vertical flow(w-component} around the artificial structure area and western area was shown to be upward flow, but downward flow occurred in the southern, northern and eastern parts at the neap tide. At the spring tide, the ebb current along E-W line showed upwelling flow in the eastern part and western area and showed upwelling flow near the artificial structure area and downwelling flow far away that one. At the spring tide, upward flow was dominant along S-N line during the flood current Volume transport by upward flow was higher than that by downward flow. Volume transport by upward flow during ebb of neap tide was greater than during flood current of neap tide, but was reverse at the spring tide.

  • PDF

Mitigation for the anti-function in caused by Saemangeum reclamation (새만금간척에 따른 미티게이션)

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.169-174
    • /
    • 1999
  • The reclamation area of Saemangeum (Kunsan) located between 126$^{\circ}$10' -126$^{\circ}$50'E and and 35$^{\circ}$35'N -36$^{\circ}$05'N at the western coast of Korea. The construction of the 33km sea dike is building in the Saemangeum area. When the construction of the sea dike in the coastal region takes plase, there exists a certain amount of soil which is diffused by the tidal current. Behavior of the soil diffusion usually depends on its intrinsic characteristics, bathymetry, construction method and used mchinery. The amount of soil at the construction acts as a pollutant which is the cause of changing the marine environment. When the soil material is diffused , it may form a layer which obstructs the light passing into the sea and causes the extinction or alteration of the living beings on the sea bottom. The settlement of soil material could change the sea bottom deposit. The purpose of MITIGATION is to harmonize the development and the conservation of environment, to restrict environmental destruction and to reproduce the enviroment damaged by the construction in the coastal region. The purpose of this study is to find the method by which we minimize the anti-function of development in the coastal region. Tide and tidal current are calculated using a two-dimensional numerical model before the construction of sea dike in Saemangeum Bay. The numerical results are compared well with field observations. On the basis of these results, we caculated the tide and tidal current after the construction of the sea dike in order to investigate the change of the tide and tidal current after the construction of the sea dike. Moreover, we calculated the tide and tidal current after the construction of submerged breakwater in order to preserve the enviornmental condition of creature habitat . We compared the tide and tidal current before and after the construction of submerbed breakwater, to investigate the possbility of MITIGATION in the fisheries.

  • PDF

Characteristics of Tidal Flow Simulation of Real Tide in West-South Coastal Waters of Korea (실조석에 의한 한국 서남해 연안역에서 해수유동의 재현특성)

  • Jeong, Seung-Myong;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • In this study, a computed tide of a real tide was introduced to improve the numerical solutions for tides and tidal flow simulations. The real tide was defined considering the nodal modulation amplitude, phase correction factor, astronomical argument, and tidal harmonic constants of all the constituents. The numerical simulation was performed using the real tide parameters for the west-south coastal waters of Korea, where the observation data for tides, tidal currents, waves, and winds over two seasons exist. The tidal flow simulation of the real tide was simulated successfully. The correlation coefficient between the observed and calculated values was 1.0, which indicated both accurate amplitude and phase. The U- and V-components of the tidal current obtained for the real tide had average valid correlations of 0.83 and 0.936, respectively. The speed error for the residual current was 0.006 m/s on the average, which indicated an insignificant difference, and the directional behavior of the residual current was very similar. In addition, the velocity error was attributed to various weather effects, such as high waves and wind storms. Therefore, this model is expected to improve current solutions provided that weathering forces, such as waves and winds, are considered.

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Changes of Tide Velocity and Direction with Saemangeum Project (새만금사업에 따른 조류속 및 유향 변화(농지조성 및 농어촌정비))

  • 김정균;송기일;최진규
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.66-71
    • /
    • 2000
  • This study was carried out to investigate the changes of tide velocity and sea bottom topology during the construction period of sea dike. The tide velocity and sea bottom depth were measured in Saemangeum area every year, and analyzed and compared to the initial data. The current and future changes of the tide velocity and direction according to the construction of Saemangeum sea dike were presented.

  • PDF

VARIATIONS IN THE SOYA WARM CURRENT OBSERVED BY HF OCEAN RADAR, COASTAL TIDE GAUGES AND SATELLITE ALTIMETRY

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Shirasawa, Kunio;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.17-20
    • /
    • 2006
  • Three HF ocean radar stations were installed at the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current. The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and $5^{\circ}$, respectively. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and short-term variations of the Soya Warm Current. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m $s^{-1}$, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  • PDF

Characteristics of Zooplankton Community in the Udolmok Waterway, Korea (울돌목 수로 동물플랑크톤의 군집 특성)

  • Yoo, Jeong-Kyu;Jung, Jung-Ho;Nam, Eun-Jung;Myung, Chul-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.201-211
    • /
    • 2006
  • 55 zooplankton taxa including 35 copepoda were observed in the Uldolmok waterway during the sampling period from August 2003 to April 2004. Neritic species showed the seasonal species fluctuation, and oceanic warm-water species occurred throughout the year. The number of taxa tended to increase at the flood tide from low tide to high tide, and to decrease at the ebb tide from high tide to low tide. Therefore, species composition of zooplankton in the Uldolmok waterway seemed to be affected by the inflow of oceanic waters with oceanic species all the year round. Total abundance of zooplankton ranged from 104 (February 2004) to 2,717 indiv. $m^{-3}$ (August 2003). According to the tidal cycle, the change of total abundance was more irregular and variable in November 2003 and February 2004 than August 2003 and April 2004. In August 2003 and April 2004, total abundance was low at the strong tide, and was high at low and high tide when tidal current was weak. Average abundances of dominant species such as Paracalanus indicus, Cirripedia nauplii and Acartia hongi were on the order of twice higher at ebb tide than flood tide. However, their abundances were also subject to wide fluctuation within flood tide and ebb tide. The changes of environmental parameters such as water temperature, salinity and chlorophyll-a concentration were negligible along the tidal periods in the Uldolmok waterway. Therefore, the advection, transfer and loss of zooplankton population derived from strong tidal current and eddy formed by the local difference of tidal velocity lead temporal variation of zooplankton community more complex and variable in the Uldolmok waterway.

Influence of Sea Condition on Catch Fluctuation of Long Line for Common Octopus, Octopus Variddilis, in the Coastal Waters of Yosu (2) (여수연안 낙지주낙 어장의 해황과 어획 변동에 관한 연구 (2))

  • 정정민;김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.159-162
    • /
    • 2001
  • In order to investigate the influence of sea condition on the catch fluctuation of long line for common octopus, octopus variabilis, the oceanographic factors. I. e., the wind direction, the wind speed, the age of moon and ebb tide and flood tide in the coastal waters of Yosu from Jan. 11 to Jul. 25 in 1997, and compared with the catches of common octopus, octopus variabilis by long line. The results obtained summerized as follows: 1) The catch of common octopus was highest in wind direction from SE and lowest in that from NW. The catch was highest at the wind speed of 2m/sec and decreased with increasing speed, over 2m/sec. 2) The catch of common octopus was highest at the day of neap tide and lowest at the mid day, from neap tide to spring tide. More strictly the catch was higher during days at which the current became rapid than during days at which the current became slow. The catch was higher always at flood tide than at ebb tide in all the days investigated and highest with in one hour from ebb tide.

  • PDF

Influence of Sea Condition on Catch Fluctuation of Long Line for Common Octopus, Octopus Variddilis, in the Coastal Waters of Yosu (2) (여수연안 낙지주낙 어장의 해황과 어획 변동에 관한 연구(2))

  • 정정민;김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.326-330
    • /
    • 2001
  • In order to investigate the influence of sea condition on the catch fluctuation of long line for common octopus, octopus variabilis, the oceanographic factors, i. e., the wind direction, the wind speed, the age of moon and ebb tide and flood tide in the coastal waters of Yosu from Jan. 11 to Jul. 25 in 1997, and compared with the catches of common octopus, octopus variabilis, by long line. The results obtained summerized as follows; 1) The catch of common octopus was highest in wind direction from SE and lowest in that from NW. The catch was highest at the wind speed of 2m/sec and decreased with increasing speed, over 2m/sec. 2) The catch of common octopus was highest at the day of neap tide and lowest at the mid day, from neap tide to spring tide. More strictly the catch was higher during days at which the current became rapid than during days at which the current became slow. The catch was higher always at flood tide than at ebb tide in all the days investigated and highest with in one hour from ebb tide.

  • PDF