• Title/Summary/Keyword: Tidal stream

Search Result 113, Processing Time 0.031 seconds

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Investigation of Motion of Single Point Moored Duct-type TCP System by Both Numerical and Experimental Method (수치 해석 및 모형실험을 이용한 수중 일점 계류식 조류발전 장치의 운동 성능 고찰)

  • JO, CHUL HEE;PARK, HONG JAE;CHO, BONG KUN;KIM, MYEONG JOO
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.212-219
    • /
    • 2017
  • As an environmental pollution and global warming due to an excessive carbon emission are intensified, the importance of renewable energy is in rise today. TCP (Tidal Current Power), one of the renewable energy sources, generates electricity by converting kinetic energy of current into rotational energy of turbine. Also the TCP has a great advantages of predictability and reliability. Because the generating power is proportional to cubic of stream velocity, amplifying current speed by applying duct is highly effective to increase the generating power. SPM (Single Point Mooring) can be applied for the weather vane with various current direction and also augments generating power of the system. In addition, simple installation and retrieval could be a merit of SPM system. By combining duct and SPM, TCP system for relatively low-speed-current and shallow water region can be feasible and economical. In this study, single point moored duct-type TCP system was designed and the motion of submerged structure was investigated in both numerical and experimental method. DNV wadam V4.8-1 and OrcaFlex 10.0a were used for the frequency and time domain motion analysis of system respectively. Duct model scaled by 0.05 of Froude conformity ratio and CWC (Circulate Water Channel) are used for experiment.

The Flow Variation due to Pier Construction at Kwangyang Bay (컨테이너 부두건설에 따른 광양만의 유황변동)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.115-125
    • /
    • 1992
  • The variation of flow pattern caused by the topographical change of Kwangyang bay, is analyzed using the numerical tidal model for the depth-integrated two- dimensional long wave equation. The results of study are as follows. Due to pier construction, the area of water surface is deceased and the water inflow into the Kwangyang bay is reduced. For this result, at the outer bay of Myo island, the tidal range is slightly increased. And at the inner bay, water level is dropped generally, and especially at the time of low water tide, the phenomena of water level drop obviously appears. According to the variation pattern, flow velocities is lower than those of non-construction condition over the Kwangyang bay. But at the channel(from Kwangyang east stream) flowing into the east Kwangyang bay, for the contraction of channel profile, flow velocity is increased. The study based on the 100 year frequency design flood discharge from Sueocheon(river) and Dongcheon(river) which are flowing into the bay and Seomjin River flowing along the boundary of the bay is also performed. During the spring tide condition, the results showed the rise of water level about 1.2 m at Seomjin River Estuary and 0.3 m at inner bay is occurred.

  • PDF

The Formative Processes and Ages of Paleo-coastal Sediments in Dangjeong-ri, Seocheon-gun in the Western Coast, South Korea (II): Complementation of Chronological Data and a Developmental Model of Coastal Geomorphology over the Past 200,000 Years (서해안 서천군 당정리 일대에 분포하는 육상 고해안 퇴적물의 형성 과정과 형성 시기(II): 추가 연대 자료 및 제4기 후기 연안 지형 발달 모델)

  • Shin, Jae-Ryul;Hong, Yeong-Min;Ryu, Hui-Gyeong;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.51-61
    • /
    • 2021
  • Following the previous study, we report a complementary dating data on the silty layers deposited in paleo-tidal conditions of the study area, Dangjeong-ri, Seocheon-gun and suggest coastal terrain development processes over the past 200,000 years. Based on the dating results, the silty layers distributed up to 25 m above mean sea level were deposited between 171 and 183 ka, and the gravel layer deposited in a fluvial environment of a paleo-Dangjeong stream was found to have formed between 78 and 83 ka. Considering relative altitudes of distribution, an uplift rate of the study area in the western coast is judged to be relatively 0.5~0.7 low to that of Pohang area in the eastern coast. Compared to Busan and Sacheon areas in the southern coast, it is assumed that an uplift rate of the study area shows a similar level with those during the late Quaternary.

Water-Level Fluctuation due to Groundwater-Surface Water Interaction in Coastal Aquifers (해안대수층에서 지하수-지표수 상호작용에 의한 지하수위 변화)

  • Kim Kue-Young;Lee Cheol-Woo;Kim Yongje;Kim Taehee;Woo Nam-Chil
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.32-41
    • /
    • 2004
  • Analysis of water-level fluctuation due to goundwater-surface water interaction in coastal aquifers is carried out by numerical modeling. The conceptual model used in this study has a stream boundary and a tidal boundary that forms a right angle and the stream partially penetrates the aquifer. We analyzed the effect of each boundary and the simultaneous effect of the two boundary conditions. The area of influence caused by the stream boundary increased during the simulation, while the influence zone of the coastal boundary was relatively constant. The groundwater level near the zone where two boundaries meet may rise by the action of combined effect of the two boundaries or may not change by cancelling the effect of each boundary. Thereafter, care must be taken when hydraulic parameters are estimated using sinusoidal oscillations of hydraulic head in coastal aquifers. Sensitivity analysis is employed to develop insight into the controls on groundwater level fluctuations. In this study our analyses focused on the effect of conductance and the stream width to the aquifer nearby.

A Study on Taehwa River Red Tide Solution through Stream Flow (유수소통을 통한 태화강 적조해결 방안 연구)

  • Cho, Hong-Je;Yoon, Sung-Kyu
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.363-375
    • /
    • 2011
  • Recently, Water quiality of urban river largely have gotten better by virtue of sewer pipe laying and sewage treatment plants construction. or the various contaminants which is flowed in into river have generated underwater ecosystem disturbance and red tide by lack of sewage and waste water disposal facilities. With tidal river, taehwa river of ulsan metropolitan city has large river width and gradual stream bed gradient at the dry and storage period. Moreover, the flow is paralyzed due to the bridge pier protection work, consist of the mat foundation which is about 1.2km from two bridge and the contaminant is accumulated. it is caused by of the red tide generated from the several years or it activates. In this study, When flow area is largest by changing independent footing of bridge pier of two bridges and using RMA2 model, we hydraulically analyzed a variable breadth of velocity and discharge. Consequently, flow rate increased the maximum 103%, discharge was exposed to increase the maximum 61%. Directly this cannot extinguish the red tide but suppresses the red tide occurrence or can reduce. And it is determined to prevent the depositioning of the contaminant and can control fundamentally the red tide occurrence cause.

Advection and Diffusion of Pollutant Inflow of Freshwater in Masan Bay (마산만에서의 담수 유입시 오염물의 이송 및 확산)

  • Yoo, Mim-Wook;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.795-798
    • /
    • 2008
  • An estuary is very important that the seawater and the freshwater meet and they formed wide foreshore and estuarine which is used as the habitat of various living thing and spawning bed of fish. Masan bay is typical closing bay in Korea. It is located 9 km from the open sea and most inside of Jinhae bay. The width of bay entrance is less than 1 km, where the flow velocity is very low. The large scale industrial complex of Masan bay is located in near Masan and Changwon city whose population is about 100 million. Because of low tidal velocity, the pollutants from the land are accumulated, which makes the water quality worse in Masan bay. The purpose of this study is to analyze the various hydraulic characteristics using RMA-2 model. The advection and diffusion of pollutant is also simulated using RMA-4 model according to the inflow of Changwon-stream and Nam-stream. The hydraulic simulations include the effect of tide which can be characterized by the tide data of Masan bay tide observatory.

  • PDF

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

Hydraulic Residence Time in a Prototype Free Water Surface Constructed Wetland

  • Lee, Kyung-Do;Kwun, Soon-Kuk;Kim, Seong-Bae;Cho, Young-Hyun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, a tracer test using rhodamine-WT was performed to investigate the flow characteristics and to quantify the observed hydraulic residence time (HRT) for a high-lying cell in the Banwol wetland of the Sihwa constructed wetland. The tracer test indicated that even if flow was mainly observed in the open water area of the Banwol wetland, water flowed continuously in the vegetative area and there was no dead zone. The calculated HRT (51.3 hrs), calculated by dividing the wetland volume by the wetland inflow, exceeded the observed HRT (38.7 hrs), since the short-circuiting of flux resulting from irregular topography and vegetation was not reflected in the calculated HRT. The exit tracer concentration curves were reproduced well by both the plug flow with dispersion and tanks-in-series models, indicating that the performance of the Banwol wetland can be estimated accurately using these models.

Vertical Buoyant Jet in Tidal Water-Stagnant Environment (조석(潮汐)의 영향을 받는 수역(水域)에서 연직상향부력(鉛直上向浮力)? -정지수역(靜止水域)-)

  • Yoon, Tae Hoon;Cha, Young Kee;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.93-101
    • /
    • 1986
  • The behavior of a plane buoyant jet discharged vertically upward into a stagnant uniform environment is analyzed by continuity, momentum transport equation by numerical scheme. The governing equations are solved by finite difference method employing stream function and vorticity transport and Prandtl's turbulent model. Results for centerline velocities and temperatures, temperature distribution and flow pattern in receiving environment due to buoyant jet in the range of discharge densimetric Froude number of 4 to 32 show good agreement with published data. Spreading rate and dispersion ratio, which are required in integral type analysis of whole range of buoyant jet and have not been obtained yet, are derived in terms of discharge densimetric Froude number and vertical distance from source.

  • PDF