• Title/Summary/Keyword: Tidal range

Search Result 320, Processing Time 0.027 seconds

Characteristics of Sediments in the Kanghwa Tidal Flat on the west coast of Korea (한국 서해 강화 갯벌의 퇴적물 특성)

  • Woo, Han Jun;Bahk, Jang Jun;Lee, Yeon Gyu;Je, Jong Geel;Choi, Jae Ung
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.167-178
    • /
    • 2004
  • The southern tidal flat of Kanghwa Island is one of the biggest flats on the west coast of Korea. Tide is typically a semidiurnal with maximum range of about 10m. The tidal flat receives large amount of sediments from Han River system. Surface sediments for sedimentary analyses were sampled at 83 stations in the study area in August 2003. The surface sediments consisted of five sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Kanghwa Island, whereas sand sediments dominated in channel and subtidal zones of the western part of Kanghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. Sedimentary facies analysis of three core sediments from the tidal flat to the south of the Kangwha Island revealed three sedimentary facies: trough-cross-bedded sand, laminated silt, and bioturbated silt. Distribution of the facies in the cores suggested that sedimentation rates has been generally high in the margin of main tidal channel, especially in the east of the Donggeum Island. Twelve-and-half-hour anchoring survey was carried out for measurements of hydrodynamic parameters at Yeomha channel near Choji Bridge(K1) and channel near Donggeum Island(K2) in June 2003. Residual flows indicated strong ebb-dominated tidal currents. Depth-integrated net suspended sediment loads for one tidal cycle were seaward movement with 309,217.9kg/m and 128,123.1kg/m at station K1 and K2, respectively. The higher value of net suspended sediment loads at station K1 suggested that lots of suspended sediments from Han River deposited in the eastern part of tidal flat.

  • PDF

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Characteristics of Grain Size and Organic Matters in the Tidal Flat Sediments of the Suncheon Bay (순천만 갯벌의 입도조성 및 유기물 분포특성)

  • Jang, Sung-Guk;Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • The purpose of this study is to investigate the characteristics of the grain size distribution and organic matters to understand the current status of the tidal flat sediment for efficient management of Suncheon Bay. We investigated the characteristics of the surface sediments in the mouth area of the Suncheon Bay at fifteen stations in April and July, 2009. Specific conclusions were as follows. The sediments in the most part of tidal flat was shown as muddy facies(clay and silt contents was more than 90%), whereas in the tidal river affected by water flow from the Dongstream was shown as sandy facies. The analyzed values of the tidal flat sediment were in the range of $1.9{\sim}3.8{\phi}$(mean $2.5{\phi}$) for sorting, and -1.5~3.2(mean -0.3) for skewness, and 1.5~14.1(mean 3.9) for kurtosis. So we knew that the tidal flat sediments in the Suncheon Bay was mainly composed by fine-grained sediment. Erosion was happened in the tidal river, whereas sedimentation was occurred in the tidal flat. The most of organic matters was derived from the Dongstream. Total organic matters shown as ignition loss was 5.75%, COD and $H_2S$ values were lower than the eutrophication level(COD; 20.0 mg/g dry, $H_2S$; 0.2 mg S/g dry). From our research the tidal flat of the Suncheon Bay is relatively fine, but a part of the flat was exceed the environmental standard. So we have to establish effective countermeasures to reduce the organic matters and nutrients derived from stream for environmental preservation of the Suncheon bay and conduct scientifically sustainable monitering for streams flowing into Suncheon Bay and tidal flat.

Performance Analysis on 2-Bladed Tidal Current Power Turbine (해양 조류발전용 2블레이드 터빈의 성능해석)

  • Lee, Kanghee;Yim, Jinyoung;Rho, Yuho;Song, Seungho;Jo, Chulhee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.1-236.1
    • /
    • 2010
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. In this paper, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3D CFD model was designed and analysed by ANSYS CFX. The analysis results and findings are summarized in the paper.

  • PDF

한강의 홍수규모에 따른 인도교수위의 조석영향분석

  • Lee, Jong-Tae;Han, Geon-Yeon;Seo, Byeong-Ha
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.67-77
    • /
    • 1993
  • The increased water level caused by tidal motion at Indokyo is analyzed by the NETWORK model. The tidal effect is studied for 3 real floods in 1990 and 8 classified hypothetical floods in which the peak discharges are in the range of 2, 000-20, 000CMS. The result of numerical simulation shows that the tidal effect is decreased as the flood is increased. The surged level is 50cm when the flood discharge is 2, 000CMS, showing that its effect is considerable. However it shows only 9cm when the discharge is 7, 000CMS which corresponds to 4.5cm of standard flood level of MOC. Therefore, so it may be possible to neglect the influence of the tidal fluctuation when the peak discharge of a flood is bigger than 7, 000CMS.

  • PDF

A Parametric Study about Blade Shapes and Blade Numbers of Water Wheel Type Tidal Turbine by Numerical Method

  • Nguyen, Manh Hung;Jeong, Haechang;Jhang, Sung-su;Kim, Bu-gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • In this paper, a numerical experiment on a tidal turbine was performed based on a water wheel design using the commercial CFD code ANSYS-CFX to contribute to the development of water wheels. The water wheel type tidal turbine was studied with different numbers of rotor blades (including ten, twelve and twenty blades types) and with different blade shapes (Straight, Curved and Zuppinger types) for comparison at several values of tip speed ratio (TSR) ranging from 0.7 to 1.2. The numerical results indicated that the 10-bladed type and the Straight-bladed type turbines absorb the highest power efficiency, up to 43 % at TSR 0.9. In addition, the 20-bladed and the Curved-bladed types showed the lowest performances in all cases of TSRs comparing with the others. Besides that, it was found that this turbine operates much effectively at low range of TSR, especially at TSRs 0.9 and 1 for all cases of blade shapes and all numbers of blades.

A three dimensional numerical model of tide and tidal current in the bay of Cheonsu in Korea

  • Moon Seup Shin;Tet
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05a
    • /
    • pp.632-637
    • /
    • 1998
  • The purpose of this study of this study is to find tide and tidal current variation by three dimensional numerical model of tide and tidal current in the bay of Cheonsu in Korea. On the basis of the observed data on water temperature and salinity data and wind data of summer(July) in the bay of Cheonsu in Korea, water circulation in the bay of Cheonsu is investigated with use of a robust diagnostic numerical model, including calculated co-range and co-tidal charts of M2 tide are similar to the observed ones. The residual flow Pattern at the surface layer during summer formed clockwise circulation in the front coastal the dike of the Sosam A zone(Ganwor island) and Taeju island. The residual flow pattern at the 15m layer during formed clockwise circulation in the front Taeju island. The residual flow Pattern at the surface layer formed anti-clockwise circulation in the upper Sangmok and Naepasu island.

  • PDF

Analysis of the Hydraulic Head Affected by Stage of Tidal Rivers (감조구역에서 지하수 수두의 거동 해석)

  • 김민환;이재형
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1995
  • In the tidal compartment, the hydraulic head is affected by the stage of tidal rivers. For groundwater or construct works, head variation of groundwater should be considered in zone of this aquifer. A numerical analysis is performed which has an 1-dimemsional explicit finite difference scheme to show the head variation of groundwater with tidal stage and hydraulic conductivity, etc. The stability of the numerical scheme is validated by using the analytic solution. The head variation of groundwater is observed for various tidal amplititude and hydraulic conductivity, mean hydraulic gradient and pumping at any point. The range of influence corresponding to the parameters used in this study is about 60m. This value is not beyond a wave length (equation omitted). There was a pumping at a constant rate out of aquifers affected by tide and not affected by tide. Because pumping head in aquifer affected by tide is short, the expense of electric power is economized in this zone. These results are applicable to trace of contaminant transport, efficient operation of groundwater, and examination of the safety and stability of works in the tidal compartment.

  • PDF

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.