• Title/Summary/Keyword: Tidal current energy

Search Result 179, Processing Time 0.04 seconds

A Study on the Flow Characteristics around Tidal Current Turbine (조류발전용 터빈 주위의 유동 특성에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.610-616
    • /
    • 2012
  • All the countries in the world is currently facing the full scale of energy-climate era currently, and making strong energy policy that will lead to green growth of the future energy resources by utilizing renewable energy as the basis of entering the advanced country becomes the goal of development that satisfies the demand for energy in 21st century. Recently, ocean energy attracted the attention along with the necessity of developing renewable energy. Ocean energy is the one of most prominent recyclable and clean resources that has not been developed yet. So, it is highly required to develop good tidal current energy conversion system in coastal area. The inflow angle that acts against tidal current turbine, seabed effect and the change of efficiency along the occurrence of cavitation were investigated through the wake flow characteristics in this study. Power coefficient degradation by seabed effect did not appear in the condition of this calculation. Efficiency degradation appeared from above $10^{\circ}$ regarding inflow angle and power coefficient was calculated as lower by 7 % at $45^{\circ}$. Torque and power coefficient increased as inflow velocity rose, but power coefficient degradation appeared from above 3m/s when the cavitation happened. So, it was recognized that the larger inflow angle and occurrence of cavitation become the reason for power degradation through the flow characteristics.

Tidal Front in the Main Tidal Channel of Kyunggi Bay, Eastern Yellow Sea

  • Lee, Heung-Jae;Lee, Seok;Cho, Cheol-Ho;Kim, Cheol-Ho
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The detailed structure of a tidal front and its ebb-to flood variation in the main tidal channel of the Kyunggi Bay in the mid-west coast of Korea were investigated by analyzing CTD data and drifter trajectories collected in late July 1999. A typical tidal front was formed in water about 60 m deep at the mouth of the channel. Isotherms and isohalines in the upper layer above the seasonal pycnocline in the offshore stratified zone inclined upward to the sea surface to form a surface front, while those in the lower layer declined to the bottom front. The location of the front is consistent with $100 S^3/cm^2$ of the mixing index H/U defined by Simpson and Hunter (1974), where H is the water depth and U is the amplitude of tidal current. The potential energy anomaly in the frontal zone varied at an ebb-to flood tidal cycle, showing a minimum at slack water after ebb but a maximum at slack water after flood. This ebb-to flood variation in potential energy anomaly is not accounted for by the mixing index. We conclude that on- and offshore displacement of the water column by tidal advection is responsible for the ebb-to-flood variation in the frontal zone.

A Study of Performance estimate and Flow Analysis of the 100kW Counter-Rotating Marine Current Turbine by CFD

  • Kim, Mun-Oh;Kim, Chang-Goo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.1-166.1
    • /
    • 2011
  • The rotor design is fundamental to the performance and dynamic response of the Counter-rotating marine tidal current turbine. The wind industry has seen significant advancement single rotor blade technology, offering considerable knowledge and making it easy to transfer to tidal stream energy converters. In this paper, 3D flow and performance an alysis on a 100 kW counter-rotating marine current turbine blade was carried out by using the 3-D Navier-Stokes commercial solver(ANSYS CFX-11.0) to provide more efficient design techniques to design engineers. The front and rear rotor diameter is 8m and the rotating speed is 24.72rpm. Hexahedral meshing was generated by ICEM-CFD to achieve better quality of results. The rated power and its approaching stream velocity for design are 100 kW and 2 m/s respectively. The pressure distribution on the blade's suction side tells us that the pressure becomes low at the leading edge of the airfoil as it moves from the hub to the tip.

  • PDF

Changes in Dynamic Characteristics of Monopile-Type Offshore Structures According to Tidal Environments and Boundary Conditions (다양한 조류 환경 및 경계 조건에 따른 모노파일형 해상구조물의 동특성 변화 분석)

  • Jung, Byung-Jin;Park, Jong-Woong;Yi, Jin-Hak;Park, Jin-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • Because a change in the natural frequencies of a structure indicates structural health problems, monitoring the natural frequencies crucial. Long-term measurement for the Uldolmok tidal current power plant structure has shown that its natural frequencies fluctuate with a constant cycle twice a day. In this study, lab-scale tests to investigate the causes of these natural frequency fluctuations were carried out in a circulating water channel. Three independent variables in the tests that could affect the fluctuation of the natural frequencies were the water level, current velocity, and boundary condition between the specimen and the bottom of the circulating water channel. The experimental results were verified with numerical ones using ABAQUS. It was found that the fluctuation of the natural frequencies was governed by a decrease in stiffness due to the boundary condition much more than the effect of added mass. In addition, it was found that the natural frequency would decrease with an increase in the tidal current velocity because of its nonlinearity when the boundary condition was severely deteriorated due to damage.

Temporal Variations of Stratification-Destratification in the Deukryang Bay, Korea (하계 득량만의 연직성층해양의 시간적 변동 특성)

  • 이병걸;조규대
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.139-150
    • /
    • 1995
  • The Quantitative estimations of the stratification - destratification(SD) phenomena in Deukryang Bay, Korea have been carried out based on the data of wind speed, heat flux through the sea surface and tidal current amplitude. To find out the main factors causing SD, wv introduce the rate of energy balance of the surface heat flux, tidal and wind stirring proposed by Simpson and Hunter(1974). The calculated potential energy of three terms are compared, from which the energy of wind stirring effect was one order smaller than the heat flux and the tidal stirring. Using the results, we complement time integration of the potential energy with the several s values of 0.010~0.014 at interval 0.001 and with wind speeds of 1.5 and 2.0 times larger than observation values at land. It shows that the variation of SD phenomena in the bay mainly depended on tidal stirring and sea surface heating in summer if there is no exceptionally strong wind event like Typhoon. The stratification become to be foamed from about 5 July although the stratification a little decreases during the second spring tidal period of middle of July.

  • PDF

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF

Detection of the morphologic change on tidal flat using intertidal DEMs

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung;Eom, Jin-Ah;Kwak, Joon-Young;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.247-249
    • /
    • 2006
  • The objective of this study is to detect a inter-tidal topographic change in a decade. Waterline extraction is a one of widely used method to generate digital elevation model (DEM) of tidal flat using multi-temporal optical data. This method has been well known that it is possible to construct detailed topographic relief of tidal flat using waterlines In this study, we generated two sets of tidal flat DEM for the southern Ganghwado. The DEMs showed that the Yeongjongdo northern tidal flat is relatively high elevation with steep gradients. The Ganghwado southern tidal flat is relatively low elevation and gentle gradients. To detect the morphologic change of tidal flat during a decade, we compared between early 1990's DEM and early 2000's DEM. Erosion during a decade is dominant at the west of southern Ganghwado tidal flat, while sedimentation is dominant at the wide channel between the southern Ganghwado and Yeongjongdo tidal flats. This area has been commonly affected by high current and sedimentation energy. Although we are not able to verify the accuracy of the changes in topography and absolute volume of sediments, this result shows that DEM using waterline extraction method is an effective tool for long term topographic change estimation.

  • PDF

A Numerical Study of Unsteady Flow around a Vertical Axis Turbine for Tidal Current Energy Conversion (조류발전용 수직축 터빈 주위의 비정상 유동 수치해석)

  • Jung, Hyun-Ju;Rhee, Shin-Hyung;Song, Mu-Seok;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • A numerical investigation was performed based on the Reynolds-Averaged Navier-Stokes(RANS) equations for the two-dimensional unsteady flow around a vertical axis turbine(VAT) with three or four blades. VAT is one of the promising devices for tidal current energy conversion. The geometry of the turbine blade was $NACA65_3$-018 airfoil, for which CFD analysis using Fluent was carried out at several angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Then CFD simulations were carried out for the whole vertical axis turbine with a two-dimensional setup. The CFD simulation demonstrated the usefulness of the method to study the typical unsteady flows around VATs and the results showed that the optimum turbine efficiency could be achieved for carefully selected combinations of the number of blade and Tip-Speed Ratio(TSR).

  • PDF

Effects of demi-hull separation ratios on motion responses of tidal current turbines-loaded catamaran

  • Junianto, Sony;Mukhtasor, Mukhtasor;Prastianto, Rudi Walujo;Jo, Chul Hee
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.87-110
    • /
    • 2020
  • Catamaran has recently been a choice to support a typical vertical axis turbine in floating tidal current energy conversion system. However, motion responses associated with the catamaran can reduce the turbines efficiency. The possibility to overcome this problem isto change the catamaran parameter by varying and simulating the demi-hull separations to have lower motion responses. This simulation was undertaken by Computational Fluid Dynamic (CFD) using potential flow analysis. Cases of demi-hull separation were considered, with ratios of demi-hull separation (S) to the breadth of demi-hull (B), S/B of 3.45, 4.95, 6.45, 7.2 and 7.95. In order to compare to the previous works in the literature, the regular wave was set with wave height of 0.8 m. Furthermore, the analysis was carried out by irregular waves with significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s or corresponding to the wave frequency, ω, of about 1.1 to 4.2 rad/s. The wave spectrum was derived from the equation of the International Towing Tank Conference (ITTC). For the case of turbines-loaded catamaran under consideration, the new finding is that the least significant amplitude response can be satisfied at the ratio S/B of 7.2. This study indicates that selecting a right choice of demi-hull separation ratio could contribute in reducing motion responses of the tidal current turbines-loaded catamaran.