• Title/Summary/Keyword: Tidal Observation

Search Result 189, Processing Time 0.026 seconds

Tidal Level Prediction of Busan Port using Long Short-Term Memory (Long Short-Term Memory를 이용한 부산항 조위 예측)

  • Kim, Hae Lim;Jeon, Yong-Ho;Park, Jae-Hyung;Yoon, Han-sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • This study developed a Recurrent Neural Network model implemented through Long Short-Term Memory (LSTM) that generates long-term tidal level data at Busan Port using tide observation data. The tide levels in Busan Port were predicted by the Korea Hydrographic and Oceanographic Administration (KHOA) using the tide data observed at Busan New Port and Tongyeong as model input data. The model was trained for one month in January 2019, and subsequently, the accuracy was calculated for one year from February 2019 to January 2020. The constructed model showed the highest performance with a correlation coefficient of 0.997 and a root mean squared error of 2.69 cm when the tide time series of Busan New Port and Tongyeong were inputted together. The study's finding reveal that long-term tidal level data prediction of an arbitrary port is possible using the deep learning recurrent neural network model.

Characteristics of Tidal Flow Simulation of Real Tide in West-South Coastal Waters of Korea (실조석에 의한 한국 서남해 연안역에서 해수유동의 재현특성)

  • Jeong, Seung-Myong;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • In this study, a computed tide of a real tide was introduced to improve the numerical solutions for tides and tidal flow simulations. The real tide was defined considering the nodal modulation amplitude, phase correction factor, astronomical argument, and tidal harmonic constants of all the constituents. The numerical simulation was performed using the real tide parameters for the west-south coastal waters of Korea, where the observation data for tides, tidal currents, waves, and winds over two seasons exist. The tidal flow simulation of the real tide was simulated successfully. The correlation coefficient between the observed and calculated values was 1.0, which indicated both accurate amplitude and phase. The U- and V-components of the tidal current obtained for the real tide had average valid correlations of 0.83 and 0.936, respectively. The speed error for the residual current was 0.006 m/s on the average, which indicated an insignificant difference, and the directional behavior of the residual current was very similar. In addition, the velocity error was attributed to various weather effects, such as high waves and wind storms. Therefore, this model is expected to improve current solutions provided that weathering forces, such as waves and winds, are considered.

Reviews on the Tidal Observation Accuracy for Unified Vertical Datum (수직기준계 연계를 위한 조석관측 정확도에 관한 고찰)

  • Lee, Young-Jin;Song, Jun-Ho
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.272-273
    • /
    • 2010
  • 본 연구에서는 NOAA에서 발간된 자료와 ICSM에서 발간한 자료를 토대로 조위관측의 정확도를 검토한 결과 최소 3개월, 또는 1년 이상의 장기관측을 하는 방안이 권장되며 NOS에서 공식적으로 인정된 19년 주기의 관측에 의한 국가기준(시기)을 정할 필요가 있음을 제시하고 있다.

  • PDF

Contraction of a newly reclaimed mudflat detected by Differential SAR Interferometry

  • Lee Hoonyol;Chi Kwang Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.57-59
    • /
    • 2004
  • This paper reports the observation of the interferometric synthetic aperture radar (InSAR) phase anomaly on a newly reclaimed mudflat, Hwaong, in west coast of Korea, detected by a series of Radarsat-l SAR data obtained mostly during 2003. The observed phase anomaly could be from subsidence of mud land caused by volumetric contraction of mud in dry season. This process must have been initiated from March 2002 when tidal water supply to this region was permanently blocked by the newly constructed embankment. The maximum subsidence rate measured from InSAR signal is about 3 cm per month. The local heterogeneity of the subsidence rate over the reclaimed mudflat may indicate various mud composition, surface-subsurface hydrological processes, or subsurface information of the mud and basement rock structure. In-situ measurement must follow to support this observation from space.

  • PDF

Circulation Experiment of the Chinhae Bay using a Three-Dimensional Diagnostic Numercal Model (3차원 진단모델을 이용한 진해만의 수치유동실험)

  • 배삼완
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.360-369
    • /
    • 1997
  • We calculated the residual current forced by buoyancy, wind stress, and tidal stress in the Chinhae Bay using a three-dimensional diagnostic model. The calculated current was also compared with the observation. The flow directs outward from the central area of the Bay in the upper layer, and also forms eddy-shape stucture in the upper and middle layers. The flow of bottom layer shows an opposite pattern compared to those of top and middle layers. The maximum speed was 6.05 em/see (September) and 3.49 cm/sec (November) in the upper layer, and 4.39 cm/sec on both month in the middle layer. The Kinetic energy of November (8.39xlO' W) was larger than that of September (1.24xlO 'W), mainly resulting from larger buoyancy effect in September. In spite of the roughness of the grid size(1 km) and wind date, the calculated flow shows eorrelation(r=0.71) with the observation. We expect that the correlation be increased by increased by adopting the fine grid and the variable coefficients of diffusion and viscosity.

  • PDF

Study of the Tidal Discharge (조석출입량에 관한 조사)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1394-1408
    • /
    • 1968
  • The tidal discharge is defined as the quantity of water flowing through a certain cross-section per unit of time, in contrast to river discharges, tidal discharges change periodically in magnitude and direction. Thus the total volumes of water flowing into again out of the system-called flood volume and ebb volume, respectively, depend on both the tidal and the river discharges. To ditermine the tidal discharge and the flood and ebb volumes of the Yong-san river, the discharges were measured at spring, mean and neap tide and simultaneous gage reading were taken at Samhak-do, Lower Myo-do, Myongsan-ni and Naju. The general procedure for measuring the tidal discharges was as follows. First, several cross-sections were measured and one of them was chosen. First, several cross-sections were measured and one of them was chosen. Then verticals were serected in the chosen cross section. Because comparatively few verticals should be representative of the discharge distribution over the river profile, the selection was done in accordance with the somtimes irregular bottom profile. The velocities were measured with the same current meters. The observations which included water level readings were continued for a period of about 13 hours. The current direction meter, a pyramid shaped resistance body, suspend in the water on a thin wire. The bubble in a circular tilting level fixed to the wire indicates the direction of the current. Reading were taken at intervals of 1m for depths of 10m or less, and for depths over 10m at intervals of 2m, going downwards and upwards. The averages of the two velocities were used for the computation of the discharges. The discharges and the flood and ebb volumes were ditermined by a graphical method. The mean velocities, corrected for their direction when necesary, were ditermined for each time interval and each vertical, and these velocities were plotted against the time. The resulting curves show possible mistakes very clearly, and the effect of observation errors could be reduced. The corrected velocities read from the curve at half-hour intervals were multiplied by the depth at the virtical at the corresponding time. The discharges thus found were ploted against the position of the vertical in the transit and joined by a smooth curve, integration of the curve rendered the total discharges as they occurred of half-hour intervals. Plotting these total discharges against the time yeilded during the day. The flood and ebb volumes were obtained by integration of the total discharge curve.

  • PDF

Acoustic Doppler Current Profiler Bottom Tracking Survey of Flow Structures around Geumo Archipelago in the Southern Waters of Korea (ADCP bottom tracking에 의한 금오열도 주변의 해수유동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.589-600
    • /
    • 2019
  • In order to investigate the flow structures around Geumo archipelago on Southern Waters of Korea, water movements were measured for 25 hours during spring tide in May and neap tide in September 2002 using ADCP (Acoustic Doppler Current Profiler) attached to a running boat. Dominant directions of ebb and flood current at spring tide are SE-NW, representing the average flow rate of approximately 40cm/s in the surface layer. However because of the topographical reason, the direction and speed of the flow in the narrow waterway sea area around the northwest of Gae Island were different. There was no notable baroclinic component of tidal flow at spring tide. This indicates that the sea area has been actively engaged in vertical mixing due to island wake or eddy due to narrow waterways, shallow water depth and rapid flow rate around archipelago. At neap tide, dominant directions of tidal flows are SSE-NNW and the average flow rate in the surface layer is about 85 percent of the spring tide. The duration and intensity of the flow direction are shorter and less dominant than the spring tide. It is expected that asymmetrical tidal mixing will occur due to vertical velocity shear and horizontal eddies. From daily mean tidal flows obtained from the ADCP observation, it was found that the northwest of Gae Island have flows in NW~NE, the west of Geumo Island have the average currents of up to 21 cm/s WSW~SSW and counterclockwise circulation or eddy currents are formed in the west of Sori Island.

Local Movement of Shorebirds for Roosting between Ganghwa and Yeongjong Island in the West Coast of Korea

  • Kim, Hwa-Chung;Yoo, Jeong-Chil
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.73-77
    • /
    • 2004
  • Movement of shorebirds for roosting was studied to find their response to insufficient roosting area on Ganghwa Island. It was taken from two kinds of aspects of population fluctuation and direct observation of movement from March to October in 2002. Based on the data from their weekly fluctuation and flight observation, shorebirds on Ganghwa Island moved to roosts located far away. Shorebirds feeding at southern Ganghwa Island moved to Yeongjong Island for roosting during the spring tide period. High tide count showed that the number of shorebirds on Yeongjong Island increased strikingly, while the number of birds on Ganghwa Island decreased. As the tide level increased, the number of shorebirds on Ganghwa Island decreased in the fall migrating season (r$_{s}$= -0.81, p<0.001), whereas that on Yeongjong Island was not correlated significantly. Direct observation showed that some of the birds on the upper tidal zone of Ganghwa Island moved directly to the northern mudflat of Yeongjong Island during the flowing tide or dropped by flat zone on Seondu-ri. Insufficient coastal wetlands on Ganghwa Island induced them to move away from the island for roosting place and to endure costly flight energy expenditure. The development of wetlands on the southern Yeongjong Island would make them have no place available to roosts. Therefore this study proposes that shorebird roosts on Ganghwa Island should be created to conserve their habitat.t.

All Sky Camera and Fabry-Perot Interferometer Observations in the Northern Polar Cap

  • Wu Qian;Killeen Timothy L.;Solomon Stanley C.;McEwen Donald J.;Guo, Weiji
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.237-247
    • /
    • 2002
  • We report all sky camera and Fabry-Perot interferometer (FPI) observations of mesospheric gravity waves and a 12-hour wave at Resolute $(75^{\circ}N)$ and a joint observation of 10-hour wave with Eureka $(80^{\circ}N)$. All sky camera observations showed a low occurrence of mesosphere gravity waves during equinoxes, which is similar to the mid-latitude region. A slightly higher occurrence near solstice appears to indicate that gravity waves are not filtered out by the neutral wind in the winter. The FPI observation of a 12-hour wave showed amplitude variations from day to day. The phase of the wave is mostly stable and consistent with the GSWM prediction in the winter. The phase shifts with season as predicted by the GSWM. Four events of the 12-hour wave were found in spring with amplitudes larger than the GSW predictions. The FPls at Resolute and Eureka also observed a wave with period close to 10 hours. The 10-hour wave maybe the result of the non-linear interaction between the semi-diurnal tide and the quasi-two day wave. Further studies are under way. Overall, the combined Resolute and Eureka observation have revealed some new fractures about the mesospheric gravity wave, tidal wave, and other oscillations.

Ram pressure stripping conditions : Theory vs. Observation

  • Lee, Seona;Sheen, Yun-Kyeong;Yoon, Hyein;Jaffe, Yara;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2020
  • Ram pressure stripping (RPS) which is known to be one of the key effects that can remove the interstellar gas in the dense environment, can be described as a simple momentum transfer relation (Gunn & Gott 1972). However, it has been suggested that the actual gas stripping process is likely more complicated than Gunn & Gott's prescription due to the complexity of gas physics such as compression, cooling and heating. By comparing the gas truncation radius predicted by theory with the stripping radius measured from the HI observation of Virgo cluster galaxies, we attempt to verify how well the RPS process can be understood by momentum transfer alone. Among the sample of galaxies undergoing active RPS, we generally find a good agreement between what is predicted and what is observed within the measurement uncertainties. However, those galaxies with the signs of other environmental effects than RPS such as tidal interaction, and/or the ones likely at relatively early or later stages of RPS show some offsets between the theory and the observation. These results imply that Gunn & Gott's formula works reasonably well in a broad sense when the RPS is a dominant process and the surrounding environment at the current location of the sample can be well defined. Otherwise, the impact of the second mechanism, as well as the (current and past) environment of the sample, should be more carefully reviewed to assess the impact of RPS on galaxy evolution.

  • PDF