• 제목/요약/키워드: Tidal Flow

검색결과 487건 처리시간 0.028초

A fundamental study on velocity restoration for tidal farm

  • Hoang, A.D.;Yang, C.J.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.266-273
    • /
    • 2013
  • With the worldwide trend of controlling the utilization of fossil fuels inducing global climate change, many efforts will have to be made on securing a sustainable energy supply. Tidal current is a concentrated form of gravitational energy, its resource is significant, but limited locations. To effectively capture tidal current energy from the sea, a group of tidal turbines should be formed and positioned with optimal size and spacing for absorbing from multiple points. Thus, the flow field including turbines becomes a huge domain, a so-called tidal farm. It can be very convenient technically and economically if a whole turbine farm is simulated by means of actuator disc thoery. So, the analysis method using actuator discs coupled with a solution of Reynolds Averaged Navier-Stokes (RANS) equations is adopted for actual tidal turbines. Actuator discs have regions where similar forces imposed by actual turbines are applied to a flow. As working in group formation, turbines naturally have interaction effects on one another. Therefore, the present paper investigate the evaluation on the operating performance of tidal farm in terms of the mutual influence among turbine units with various lateral and longitudinal spacing. Authors expect that results of the present study contribute to the development of tidal farm for the future potential energy.

부정류에 의한 감조하천의 홍수분석 (Flood Analysis by Unsteady Flow on Tidal River Estuary)

  • 김현영
    • 한국농공학회지
    • /
    • 제32권4호
    • /
    • pp.81-88
    • /
    • 1990
  • The flow in a river reach where is influenced by tidal motion is characterized by unsteady flow. The flood analysis in the river reach needs depending upon the theory based on the complete unsteady flow equations. In this study the unsteady flow model which is called CRIUM (Channel Routing by Implicit Unsteady Flow Model) was developed and was applied to the Mankyong and Dongjin river in order to analyze the flood characteristics. The results, which were calibrated and verified by the flood records to be measured in the two rivers, show that unsteady flow mode] can be used for the derivation of the flood hydrograph. The peak flood discharges were estimated as 4,960 and $2,870m^3$/sec in 100 year frequency at the estuary of the Mankyong and Dongjin river, respectively. In addition, it was analyzed that the river reaches were not influenced by tidal motion when the discharge magnitude was larger than approximately $3,000m^3$/sec.

  • PDF

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • 제13권2호
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

잔교식 항만구조물 주변에서 해수유동의 평가 (Evaluation of Tidal Flow around the Pile-supported Pier Structures)

  • 박일흠
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권2호
    • /
    • pp.82-88
    • /
    • 2004
  • 투과성 항만구조물 주변에서 해수유동을 평가하기 위하여, 흐름 저항을 고려한 수치모형을 사용하였다 조석 조류수치모형에서 임의 물체에 대한 흐름 저항을 고려하기 위하여 수심적분된 전통적인 동수력학 방정식에 항력항을 첨가하였다. 그리고 해수교환율을 평가하기 위하여 임의행보(random walk) 수치모형을 사용하였다. 본 모형은 부산항의 잔교식 항만구조물의 설계에 이용되었으며, 이 때 투과성 구조물은 불투과성 구조물의 경우보다 유속이 증가하고 해수교환율이 향상되는 결과를 보였다. 본 모형은 앞으로 투과성 구조물의 설계에 있어서 유용하게 사용될 수 있을 것으로 기대된다.

  • PDF

감조하천에서의 저수위 유량산정 다중회귀식 개발 (Development of Regression Equation for Water Quantity Estimation in a Tidal River)

  • 이상진;류경식;이배성;윤종수
    • 한국물환경학회지
    • /
    • 제23권3호
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.

Effect of Intake Vortex Occurrence on the Performance of an Axial Hydraulic Turbine in Sihwa-Lake Tidal Power Plant, Korea

  • Kim, Jin-Hyuk;Heo, Man-Woong;Cha, Kyung-Hun;Kim, Kwang-Yong;Tac, Se-Wyan;Cho, Yong;Hwang, Jae-Chun;Collins, Maria
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권4호
    • /
    • pp.174-179
    • /
    • 2012
  • A numerical study to investigate the effect of intake vortex occurrence on the performance of an axial hydraulic turbine for generating tidal power energy in Sihwa-lake tidal power plant, Korea, is performed. Numerical analysis of the flow through an sxial hydraulic turbine is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes dquations with the shear stress transport turbulence model. In the real turbine operation, the vortex flows are occurred in both the side corners around the intake of an axial hydraulic turbine due to the interaction between the inflow angle of water and intake structure. To analyze these vortex phenomena and to evaluate their impacts on the turbine performance, the internal flow fields of the axial hydraulic turbines with the different inflow angles are compared with their performances. As the results of numerical analysis, the vortex flows do not directly affect the turbine performance.

시화조력발전소 방류 수문을 활용한 조류발전이 조력발전에 미치는 영향 (Effect of tidal current turbine using the discharge gate of Siwha tidal power plant on the tidal power generating)

  • 김영준;김용열;조용;고재명
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.236.2-236.2
    • /
    • 2010
  • The tidal current power is the power plant by installing the turbine or rotor where the tidal speed is fast. This system converting the horizontal movement to rotating energy. Tidal power turbine is needed for the dam to utilize the pressure difference. However, tidal current power using the only flow. The tidal current power was evaluated as the impact on the marine environment surrounding was less and the development of eco-friendly way. In this article, we calculated the effect of tidal current turbine on the tidal power generating by mean of CFD. With these calculated results, we checked the possibility of tidal current power using tidal power plant the discharge gate.

  • PDF

대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구 (Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract)

  • 구재학;김종숭
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

황해연안의 2013년 11월 이상조위편차 발생 원인 (The Cause of Abnormal Tidal Residuals Along the Coast of the Yellow Sea in November 2013)

  • 김호균;김영택;이동환
    • 해양환경안전학회지
    • /
    • 제22권4호
    • /
    • pp.344-353
    • /
    • 2016
  • 황해연안 조위관측소 10 개 지점에서 2013년 11월 24일 밤부터 25일 오전까지 관측한 해수면, 해면기압, 바람, 유동 자료뿐만 아니라 일기도를 분석하여 이상조위편차의 발생 원인과 관측자료들 간의 상호상관성을 알아보았다. 이상조위편차란 최대조위편차와 최소조위편차가 나타나는 시간동안 두 편차간의 차를 의미한다. 영종도의 최대조위편차는 111 cm, 최소조위편차는 -65 cm로, 4시간 1분 동안 176 cm의 이상조위편차를 보여 10개 조위관측소 가운데 가장 크다. 반면 모슬포의 이상조위편차는 8시간 52분 동안 약 68 cm로 가장 작다. 이 같은 이상조위편차는 기압점프에 의한 기상해일이 아니라 저기압에 의한 기압배치의 영향으로 바람에 의해 발생한 것으로 확인되었다. 각 지점에서 이상조위편차에 의한 흐름은 연평균 낙조류 세기의 16 ~ 41 %로 무시할 수 없을 정도이다. 조위편차, 바람, 조류잔차의 상호상관관계로부터 저기압의 중심이 한반도 서쪽에 가까이 위치해 있을 때 인천에서 남풍계열의 바람에 의한 북향류가 해수면을 상승시켰고, 한반도 통과 후 북풍계열의 바람에 의해 남향류가 해수면을 하강시켰다.

영구자석 동기발전기와 회류수조를 이용한 조류발전 시스템의 특성 해석 (Analysis of the Characteristics of the Tidal Current Power Generation System Using PMSG and Water Tunnel)

  • 안원영;이석현;김근수;이강희;조철희
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured the output power according to the stream velocity by a water tunnel system and a simulation in MATLAB/Simulink. The water tunnel system consisted of impeller tidal flow transducer and PMSG with rotor in the water. The simulation consisted of PMSG, the tidal current turbine, and back-to-back converter. Also, we simulated the characteristics of output power according to the change of blade length and angular velocity.