• Title/Summary/Keyword: Tidal Flats

Search Result 326, Processing Time 0.023 seconds

A Finite Element Hydrodynamic Model far Moving Boundary Problems (이동경계를 고려한 유한요소 해수류동모형)

  • 정태성;김창식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.146-155
    • /
    • 1992
  • It has been conventional to treat the land boundary as a fixed one in numerical modeling of tidal flows, particularly in the finite element scheme. However conventional models using the fixed land boundary result in unrealistic tidal flows in inter-tidal zones which exist over wide coastal area in Korea. In this study, a 2-dimensional hydrodynamic model, using finite element method for moving boundary problems was developed. The performance of the model was tested in a rectangular channel with an open boundary at one end and a moving boundary at the other end. The model was applied to calculate the tidal currents in Maro Hae, located in the southwestern part of Korea where wide tidal flats develop. The behavior of tidal currents in the Udolmok and near the tidal flats in the study area was satisfactory when compared with the observed data. Variation of tidal currents due to the construction of Kochunam sea-dyke which barrages large area of tidal flat was presented. The results of this study confirm the efficiency of moving boundary treatment in coastal numerical models.

  • PDF

Comparative Study for dry-wet Treatment Effect in a Tidal Hydrodynamic Simulation (조석수동역학 모의에서 조간대 침수-노출 고려효과 비교연구)

  • 서승원;김정훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • In order to evaluate the effect of dry-wet treatment on well developed tidal flats along the complex coastal line in the western part of Korean Peninsula, we adopted a finite element tidal hydrodynamic simulation model, ADCIRC incorporating newly suggested dry-wet option and applied it to Chonbuk coastal area and Keum river estuary. Model comparison with observed current data by RMS error in the Chonbuk area shows very good agreement within 1cm/sec of tidal velocity difference and 3% of error to maximum tidal currents. However there is not seen any significant advantages in dry-wet treatment. For the tidal volume tests in the Keum river estuary, the differences are satisfied within 5% nevertheless of dry-wet treatment but in a near cross section it marks over 20%. However both results are almost same in tidal residual tests. Thus it can be concluded that dry-wet option is not always necessary in the simulation of long-term dispersion analysis.

Measurement of Net Photosynthetic Rates in Intertidal flats of Ganghwa-gun and Incheon North Harbor using Oxygen Microsensors (산소 미세전극을 이용한 강화군과 인천 북항 조간대 갯벌의 순광합성률 측정)

  • Hwang, Chung-Yeon;Cho, Byung-Cheol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • To find out temporal variations of net photosynthetic rate (NPR) of intertidal flats, we measured oxygen microprofiles in sediments with oxygen microsensors 4 times from December 2003 to June 2004. The study areas were the intertidial flats in Janghwa-ri and Dongmak-ri, located on the southwestern and the southern parts of Ganghwa-gun, respectively, and in Incheon North Harbor where the content of organic matter was relatively high. During the investigation, oxygen penetration depths in the tidal flats of Janghwa-ri and Dongmak-ri were high in December (mean values of 4.0-4.1 mm). Thereafter, the oxygen penetration depths declined to mean values of 2.2-2.8 mm and 1.6-1.8 mm in the two tidal flats. Interestingly, the oxygen penetration depths in the Incheon North Harbor tidal flat showed a lower range $(0.8{\pm}0.3\;mm;\;mean{\pm}1SD)$ over the period. The maximum NPR in the Dongmak-ri tidal flat was found in March $(11.1{\pm}2.8\;mmol\;O_2\;m^{-2}\;h^{-1})$, and those In Janghwa-ri $(6.1{\pm}4.1\;mmol\;O_2\;m^{-2}\;h^{-1})$ and Incheon North Harbor $(6.4{\pm}1.4\;mmol\;O_2\;m^{-2}\;h^{-1})$ were observed in May. During the period when NPR was most active, the highest oxygen concentration was found at 0.1-0.5 mm depth below the surface sediment, and was on average 1.8-3.2 times higher than the air-saturated oxygen concentration in the overlying seawater. Although we took into account of low in situ light intensity $(400{\mu}Einst\;m^{-2}\;s^{-1})$ during the investigation in June, NPR in the 3 study areas decreased significantly to less than $0.2\;mmol\;O_2\;m^{-2}\;h^{-1})$. Thus, temporal variations of NPR were somewhat different among the tidal flats. Generally, benthic primary producers inhabiting in the uppermost 0.5 mm of the sediment showed a peak photosynthetic activity in the study areas in spring. This is the first domestic report on photosynthetic rates of benthic microflora in the tidal flats with oxygen microsensors, and the use of the microsensor can be widely applied to measurements of benthic primary production of a tidal flat and the oxygen consumption rate of surficial sediments.

Bathymetric and Topographic Changes of the Gomso-Bay Tidal Flat, West Coast of the Korean Peninsula (한반도 서해안 곰소만 갯벌의 수심 및 지형 변화)

  • Jin Ho Chang;Yong-Gil Kim;Myong Sun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.552-561
    • /
    • 2023
  • The seafloor topography of Gomso Bay on the west coast of Korea was investigated using subtidal bathymetry and tidal-flat altimetry. Gomso Bay consists of 80% tidal flats and 20% subtidal zone, and is divided into an outer bay and an inner bay by the Jujincheon esturary channel. The outer bay tidal flat, has few tidal channels, has a concave topographic profile, and is characterized by the development of chenier and intertidal sand bars, giving it the appearance of gently sloping, dissipative beaches. The inner bay tidal flat has wide upper and middle tidal flats with a well-developed tidal channel system without cheniers. Moreover, the topographical cross-section between these tidal channels is convex upward, and shows the characteristics of a depositional environment greatly influenced by tidal channels and tidal action. An analysis of the horizontal movement of the tidal flat environment over the past 37 years investigating changes in the iso-depth lines in the Gomso-Bay tidal flat between 1981 and 2018 revealed that the Gomso-Bay tidal flat retreated gradually landward. As a result of analyzing the erosion and sedimentation characteristics of Gomso Bay, assuming that most of the water depth changes were due to changes in the elevation of the sea floor and sea level, an average of 1 cm (0 mm/y) of sediment was eroded in the outer bay over the past 37 years (1981-2018), In the inner bay, an average of 50 cm (14 mm/y) was deposited. Notably, the high tidal flats of the outer bay were largely eroded. Monitoring photographs of the coast showed that most of the erosion of the high tidal flats in the outer bay occurred in a short period around 1999 (probably 1997-2002), and that the erosion resulted from the erosion of sand dunes and high-tide beaches caused by temporarily greatly raised high tide levels and storms.

Filtration of Red Tide Dinoflagellates by an Intertidal Bivalve, Glauconome chinensis Gray: An Implication for the Potentials of Bivalves in Tidal Flats

  • Lee Chang-Hoon;Song Jae Yoon;Chung Ee-Yung
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To understand the physiology of a suspension-feeding bivalve and its potential impacts on the dynamics of red tides on tidal flats, rates of clearance and ingestion of Glauconome chinensis were measured as a function of algal concentration, when the bivalve was fed on a nontoxic strain of red tide dinoflagellate Prorocentrum minimum, Cochlodinium polykrikoides or Scrippsiella trochoidea. With increasing algal concentration, weight-specific clearance rate increased rapidly at lower concentrations and after reaching the maximum at ca. 0.2 to 1.0 mgC/L, it decreased at higher concentrations. Maximum clearance rate was nearly equal for different algal species and ranged between 2.1 and 2.6 L/g/hr. Weight-specific ingestion rate also increased at lower algal concentrations but saturated at higher concentrations. Maximum ingestion rate was 2 to 10 fold different with different algal species: S. trochoidea (10.1 mgC/g/hr), P. minimum (3.9 mgC/g/hr), and C. polykrikoides (0.99 mgC/g/hr). Nitrogen and protein content showed that S. trochoidea is the best among the tested three red tide dinoflagellates. The maximum filtration capacity, calculated by combining the data on ingestion rate from laboratory experiments and those from the field for the density of the bivalve and the red tide dinoflagellates was 4.7, 1.4, and 25.3 tons/m2/day for P. minimum, C. polykrikoides, and S. trochoidea, respectively. It is hypothesized that the abundant suspension-feeding bivalves in tidal flats can effectively mitigate the outbreak of red tides.

Applicability of 3-D Models for Hydrodynamic Simulation near Tidal Flat Area (조간대 해역의 3차원 유동모형 적용성)

  • Kang, Ju-Whan;Kim, Yang-Seon;So, Jae-Kwi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.176-183
    • /
    • 2011
  • Applicabilities of two 3-D hydrodynamic models on Chungkye Bay in which tidal flats are well developed were examined. Both EFDC model and ESCORT model with the ${\sigma}$-coordinate showed fairly good results. However, their efficiencies were lowered especially on the tidal flats due to dense vertical grids. This inefficiency could be overcome by using the z-coordinate of the ESCORT model keeping similar accuracy.

Faunal Composition and Spatial Distributions of Macrozoobenthos in the Tidal Flat of the Nakdong River Estuary, Korea (낙동강 하구 모래갯벌에 서식하는 대형저서동물의 군집구조와 분포양상)

  • Seo, Jin-Young;Choi, Jin-Woo;Shin, Kyoungsoon
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to find the faunal composition and distribution patterns of macrobenthos where the sand tidal flat around barrier island at Nakdong River estuary in May, 2016 and 2017. The number of species ranged from 31 to 39, and density was from 789 to 1,644 ind.m-2 during the study period in the three tidal flats. The number of species and density were the highest in the tidal flat of Shinja-do and Jinwoo-do, respectively. The dominant species were Gammaridae unid. in amphipods of crustacea, Scoletoma heteropoda, Scoloplos armiger, Heteromastus filiformis, Prionospio japonica in polychaeta and Batillaria cumingii, Laternula marilina in mollusks from the three tidal flats. The proportion of carnivores such as crustacea and mollusks was higher in the upper part of the tidal flat, and polychaetes of deposit feeders, dominated in the middle and lower tidal flat. Overall, the intertidal macrobenthic communities in the study area showed a high proportion of carnivores. However, the sites where the mud content is high such as muddy sand sites, they showed a higher proportion of surface deposit feeders belonging to tube-builders which contribute to sediment stability. From this study, it seemed that the macrobenthic fauna of the sandy tidal flat at the Nakdong River estuary showed a similar fauna composition and zonal distribution patterns from those in other sandy tidal flats in Korea.

Impacts of Local Meteorology caused by Tidal Change in the West Sea on Ozone Distributions in the Seoul Metropolitan Area (서해 조석현상에 따른 국지기상 변화가 수도권 오존농도에 미치는 영향)

  • Kim, Sung Min;Kim, Yoo-Keun;An, Hye Yeon;Kang, Yoon-Hee;Jeong, Ju-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.341-356
    • /
    • 2019
  • In this study, the impacts of local meteorology caused by tidal changes in the West Sea on ozone distributions in the Seoul Metropolitan Area (SMA) were analyzed using a meteorological model (WRF) and an air quality (CMAQ) model. This study was carried out during the day (1200-1800 LST) between August 3 and 9, 2016. The total area of tidal flats along with the tidal changes was calculated to be approximately $912km^2$, based on data provided by the Environmental Geographic Information Service (EGIS) and the Ministry of Oceans and Fisheries (MOF). Modeling was carried out based on three experiments, and the land cover of the tidal flats for each experiment was designed using the coastal wetlands, water bodies (i.e., high tide), and the barren or sparsely vegetated areas (i.e., low tide). The land cover parameters of the coastal wetlands used in this study were improved in the herbaceous wetland of the WRF using updated albedo, roughness length, and soil heat capacity. The results showed that the land cover variation during high tide caused a decrease in temperature (maximum $4.5^{\circ}C$) and planetary boundary layer (PBL) height (maximum 1200 m), and an increase in humidity (maximum 25%) and wind speed (maximum $1.5ms^{-1}$). These meteorological changes increased the ozone concentration (about 5.0 ppb) in the coastal areas including the tidal flats. The increase in the ozone concentration during high tide may be caused by a weak diffusion to the upper layer due to a decrease in the PBL height. The changes in the meteorological variables and ozone concentration during low tide were lesser than those occurring during high tide. This study suggests that the meteorological variations caused by tidal changes have a meaningful effect on the ozone concentration in the SMA.