• Title/Summary/Keyword: Tidal Bench Mark(TBM)

Search Result 5, Processing Time 0.021 seconds

The Estimation of Design Tide Level over the West Coast of Korea Based on the Kriging Model (크리징 모형을 이용한 서해 설계 기준 조위면의 추정에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.611-620
    • /
    • 1997
  • The history of Tidal Bench Mark(TBM) at four major tide observation stations on the the Korea West Coast is reviewed. The data concerned with the local mean sea level(LMSL), the datum level(DL), and TBM is collected and checked. The values of LMSL surveyed by Rural Development Corporation(RDC), Office of Hydrographic Affair(OHA), and Office of Port Affair(OPA) are compared so that their unbiased MSLs at four stations are determined. Kriging model is introduced to estimate the design levels for tide; DL, MSL, and high water spring tide(HWOST). The estimated design level is well fitted with the sample data. The value of the identified drifts increase with the latitude. The estimated semi-variograms ${\gamma}(h)$ show self similarity. The values of the ${\gamma}(h)$ for DL and HWOST are 0.005 times as much as the values of ${\gamma}(h)$ of MSL.

  • PDF

Numerical Modeling of Storm Surge around the Coast of Pusan (부산연안 폭풍해일 변동양상과 수치예측)

  • 이종섭;주귀홍;장선덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1990
  • The water level variation due to the Typhoon around the coast of Pusan in the southern sea of Korea is investigated from the observed tidal record. Water level variations at six stations along the coast are discussed in association with the meteorological data. The characteristics of storm surge at Pusan during Typhoon Thelma in 1987 is analysed using the observed data, and it is performed the numerical simulation of storm surge which includes a inverse barometric effect due to the horizontal distribution of sea sur-face pressure. From the calculation results, the peak value of storm surge in the coast of Pusan was occur-red around the 01:00 July 16th, which is well coincident with the observed water level variation at the Kadukdo. However, the calculated value at the Pusan TBM is inconsistent with the observed one, which is regarded due to a reason that the Tidal Bench Mark (TBM) locates in the channel. In the computation results, the maximum surge occurs at the coast of Nakdong estuary, which is considered primarily due to a topographic effect, and water level variation exceeded 2.5 meter in these areas while only about 60 cm in another coasts.

  • PDF

Transformation Model of Vertical Datum between Land and Ocean Height System using the Precise Spirit Leveling Results (정밀수준측량 성과를 이용한 육상 및 해상 수직기준면 변환모델링)

  • Lee, Dong-Ha;Yun, Hong-Sic;Hwang, Jin Sang;Suh, Yong-Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.407-419
    • /
    • 2012
  • It is difficult to obtain the accurate and homogeneous height information over the whole Korea due to the effect of different vertical datums have been divided into land and sea part. In this study, we tried to unify the different vertical datums using the precise spirit leveling between TBM (tidal bench mark) and BM (bench mark) in order to solve the problems caused by different vertical datums. For this, the vertical datum offsets at observed points which were calculate from leveling results and then transformation model of vertical datum will be modelled using calculated offsets along the coastal line. For suggesting the precise modelling method to vertical datum transformation, we analyzed results from various interpolation methods such as Spline and LSC method. As the results from analysis, the LSC method combined with 4-parameters trend model is more suitable for modelling the offsets between vertical datums. The final transformation model of vertical datum using the combination of LSC and 4-parameter model which provides the transformation accuracies of ${\pm}10.4cm{\sim}14.8cm$ level. And, the software for vertical datum transformation that was also developed using the final model in order to convert the height information included in various spatial data effectively. Therefore, the transformation model between vertical datums of land and sea part, which is developed in this study, is expected to minimize the confusion caused by mismatch of height information in the use of spatial data, and it also can be minimize economic and time losses in various application fields such as coastal development project, coastal disaster prevention, etc.

Analysis of National Vertical Datum Connection Using Tidal Bench Mark (기본수준점을 이용한 국가수직기준연계 분석 연구)

  • Yoon, Ha Su;Chang, Min Chol;Choi, Yun Soo;Huh, Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.47-56
    • /
    • 2014
  • Recently, the velocity of sea-level rising has increased due to the global warming and the natural disasters have been occurred many times. Therefore, there are various demands for the integration of vertical reference datums for the ocean and land areas in order to develop a coastal area and prevent a natural disaster. Currently, the vertical datum for the ocean area refers to Local Mean Sea Level(LMSL) and the vertical datum for the land area is based on Incheon Mean Sea Level(IMSL). This study uses 31 points of Tidal Gauge Bench Mark (TGBM) in order to compares and analyzes the geometric heights referring LMSL, IMSL, and the nationally determined geoid surface. 11 points of comparable data are biased more than 10 cm when the geometric heights are compared. It seems to be caused by the inflow of river, the relocation of Tidal Gauge Station, and the topographic change by harbor construction. Also, this study analyze the inclination of sea surface which is the difference between IMSL and LMSL, and it shows the inclination of sea surface increases from the western to southern, and eastern seas. In this study, it is shown that TGBM can be used to integrate vertical datums for the ocean and land areas. In order to integrate the vertical datums, there need more surveying data connecting the ocean to the land area, also cooperation between Korea Hydrographic and Oceanographic Administration and National Geographic Information Institute. It is expected that the integrated vertical datum can be applied to the development of coastal area and the preventative of natural disaster.

The Sea Level Slopes along the Korean Peninsular Coast based on the First Order Levelling Net in Korea (1등 수준망에 기준한 한반도 연안의 해면경사)

  • 이창경
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.35-41
    • /
    • 1993
  • The height differences in Mean Sea Level is an important factor in geodetic leveling net, because MSL is the reference datum for height. Geodesists and Oceanographers agree on the height differences in MSL in the east-west direction, but they disagree almost always on the north-south slope, each suspecting systematic errors in the leveling methods of the others. A promising method for determining this slope is comparison of MSL at the tidal station connected by geodetic leveling. The slopes of the sea surface along the coast of Korean Peninsular is estimated from conventional local MSL at the tidal station and bench mark height of first order leveling net in Korea. As a reference level surface, MSL at Inchon is chosen. The results indicate that sea level rises along coast of Korean Peninsular from south to north about 5.5 cm/latitude. In the east-west direction, sea level along East Sea coast stands about 5 cm higher than that along Yellow Sea coast. These are not invariable but provisional phenomena. It may become certain provided that the exact MSL is estimated.

  • PDF