• Title/Summary/Keyword: Tidal

Search Result 3,133, Processing Time 0.026 seconds

Researches on Tidal Flats in Korea (한국의 간석지 연구)

  • JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.59-78
    • /
    • 2011
  • In this study, the tidal flat research history of South Korea was organized by type and period. South Korea's tidal flat research history was largely divided into four fields: sediment research of tidal flat, research using satellite imagery, research on the Quaternary environment change and tidal flats, and ecological research on tidal flats. The comprehensive review of the South Korean tidal flat research history showed that tidal flats had been researched on since the period of Japanese colonial period, but most of the past studies were related to fisheries. Then, in the 1960s, the studies started to focus on the reclaimed land created through reclamation projects. The research on tidal flats from a geomorphological perspective fundamentally started in the 1970s, and the importance of tidal flats became more widely known in the 1980s. Most of the studies then were about the sedimentary environment and the form of landform, the ecosystem, and morphological changes. Since the 2000s, research has been carried out on satellite imagery data together with field survey, to continuously monitor the changes in the sedimentary facies of tidal flats, and in the sedimentary environment. There have been many academic studies on the geographic field of tidal flats, but the research performance on tidal flats in terms of geomorphology is still a blue ocean that has been touched by only a few. Therefore, it is hoped that various studies on Korean tidal flats will be conducted by geomorphologists in the future, and that such area will be established as an important field of study in geomorphology.

Tidal Characteristics Change in the Asan Bay due to the Hwaong (Namyang Bay) Tidal Barrier (화옹 (남양만) 방조제에 따른 아산만의 조석변화)

  • Park, Moon-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.320-324
    • /
    • 2008
  • In order to identify the change of tidal characteristics on average in the Asan Bay due to the construction of the Hwaong (Namyang Bay) tidal barrier (HTB), the tide data at Pyongtack (PT) and Anheung (AH) for the periods from 1993 to 2006 were analyzed using the harmonic analysis method, and major and shallow water tidal constituents were compared. The semidiurnal tidal amplitudes at PT increased while those at AH decreased after the tidal barrier construction. In particular, the amplitudes at PT increased abruptly during the period of $2002{\sim}2003$ when HTB was completed. On the other hand, the amplitudes of the diurnal tides at PT and AH showed minimal change. This suggests that the tidal characteristics change in the Asan Bay may be related to the construction of HTB. The cause of this change is different from either blocking the tidal wave propagation by the Keum River tidal barrier or removing 'choking effect' by the Yeongsan River tidal barrier. The $M_4/M_2$ ratio increased and their phase difference decreased after the completion of HTB. Accordingly, these changes may result in increase of tidal range, decrease of the flood duration and increase of the flood current velocity, inducing more sediments into the Asan Bay.

Seasonal Variation and Preservation Potential of Tidal-Flat Sediments on the Tidal Flat of Gomso Bay, West Coast of Korea

  • Chang, Jin-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.19-22
    • /
    • 2004
  • Seasonal changes of topograpy, sediment grain size and accumulation rate on the Gomso-Bay tidal flat(Fig. 1), west coast of Korea, have studied in order to understand the seasonal accumulation pattern and preservation potential of tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheiers accelerates during the winter and typhoon period, but it almost stops in summer when mud deposition is instead predominant on the middle to upper tidal flat. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods(Fig. 2). Measurements of accululation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface(Table 1) : the upper flat, where the accumulation rate of summer was generally higher than that of winter, was characterized by a continuous deposition throughout the entire year, whereas on the middle flat, sediment accumulations were concentrated in winter realtive to summer, and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Cancores taken across the tidal flat reveal that sand-mud interlaers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore(Fig. 3). Based on above results, it is suggested that the storm deposits formed by winter stors and typhoons would consist of the major part of the Gomso-Bay deposits(Fig. 4).

  • PDF

Long-term Variation of Tidal-flat Sediments in Gomso Bay, West Coast of Korea (곰소만 조간대 퇴적물의 장기적 변화)

  • Chang, Jin-Ho;Ryu, Sang-Ock;Jo, Yeong-Jo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.357-366
    • /
    • 2007
  • In Gomso Bay, on the west coast of Korea, the surface sediments sampled in 1991 and 2006 were analysed to identify the long-term variations of tidal flat sediments. Silt and clay contents have decreased in the bay-mouth tidal flats whereas sand and clay contents have decreased on the inner-bay and bay-head tidal flats over the last 15 year period. In particular, the clay contents of the tidal flats in 2006 were relatively low when compared to those of both tidal flats adjacent to other semi-enclosed bays and those of the tidal flats in 1991. The variations of textural compositions in the tidal flat sediments have led to changes of the sedimentary facies. It indicates that the changes must have been made by the changes of hydrodynamic conditions impacted by human activities, such as the construction of sea-walls, land reclamation, structures of farms constructed compactly near the low water line, and the Saemangeum dyke constructed in the northern part of the area where this research was conducted.

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF

Numerical Simulation for Behavior of Tidal Elevation and Tidal Currents in the South Sea (남해안의 조위 및 조류거동 수치모의)

  • Kwon, Seok-Jae;Kang, Tae-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.253-265
    • /
    • 2007
  • This study applied the previous results of the NAO model, a tidal correction model, to the open boundary condition for the behavior of tidal elevation and tidal currents in the South Sea. This study used the EFDC model considering the wetting and drying problem and using the $\sigma-coordinate$ as a vertical coordinate and generated two mesh cases of the constant grid size of 2.0 km and the variable grid size of $0.5\sim2.0km$. The numerical results for the tides showed that the predicted results were in quite good agreements with the observational data acquired from the tidal stations of the NORI. The predicted tides were observed to propagate from the east area to the west area in the South Sea. The verification results reveal that the numerical results are more correlated with the measured tidal data as the grid size decreases. The grid size of 2 km results in proper simulation of tidal currents in wide waterway and offshore area whereas the numerical results from the grid size of 0.5 km tend to somewhat underestimate the tidal currents affected by narrow waterway and topography in inner-bay.

A Study on the Design of Tidal Current Farm in the Bunamgun-do (부남군도에서의 조류발전단지 설계에 관한 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • Many efforts will have to be made on securing the stable supply of the energy due to the worldwide trend of controlling the utilization fossil fuels inducing global climate change. Renewable portfolio standard enforced to power companies over 500 MW capacity from 2012. Tidal current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop a tidal current energy conversion system(TECS) in coastal region. So, we examine a tidal in-stream energy using a numerical model and estimate a tidal current potential for commercialization of tidal current power plant in the sea of the Bunamgun-do. Available tidal energy resources is also analytically estimated using a tidal farm method and the annual energy production of an optimal TECS arrays will be calculated with taking into account interference of lateral and longitudinal spacing.

Surveying for Monitoring Topographic Changes of Tidal Zone (조간대 지형변화측량의 방법과 문제)

  • 이창경;진준호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.553-558
    • /
    • 2004
  • Periodic profiling by level is a conventional method for monitoring topographic changes in a specific part of tidal zone. Periodic aerial photographs are used for monitoring topographic change of broad tidal zone area. In this study, spot heights at interval of 50m on 5 profiling lines were leveled periodically for precise monitoring topographic change of tidal zone. For monitoring broad topographic change of tidal zone, aerial photographs were also taken by film camera loaded on pilotless helicopter periodically Periodic profiling shows the change of heights on the lines well. On the other hand, aerial photographs taken by film camera loaded on pilotless helicopter have some problems to detect topographic change of tidal zone precise. Because the scale and incline of the photographs were not same, it is hard to compare them. Therefore, for more precise monitoring of topographic changes in tidal zone, it is need to take aerial pictures with same scale and same incline.

  • PDF

Tidal Computations for Seohan Bay (서한만의 조석산정)

  • 이종찬;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 1992
  • A two-dimensional numerical tidal model is formulated to reproduce tides in the northeastern Yellow-Sea, Seohan Bay. The model was formulated on spherical grid system with mesh resolution of 1' latitude by 4/3' longitude. As a first step, tidal distribution of four major tidal constituents are computed and compared with coastal observation. Independent tidal charts for the M$_2$, S$_2$, $K_1$, and $O_1$ tides were presented. Residual tidal currents and tidal energy flux were also computed.

  • PDF

Development of Uldolmok Tidal Current Energy (울돌목 조류에너지 개발 현황과 전망)

  • Lee Kwang-Soo;Yum Ki-Dai;Park Jin Soon;Kang Sok Kuh;Park Woo-Sun;Han Sang-Hun;Jung Gong-Il;Park Jung Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.512-515
    • /
    • 2005
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides result in strong tidal current. The kinetic energy of these currents can be efficiently exploited by using tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam. Extensive coastal engineer ing research works have been carried out. This paper describes some observation results of field campaign, design of the supporting structure of a pilot plant of 1,000kW and a future tidal current power plant and so on.

  • PDF