• Title/Summary/Keyword: Tic-Tac-Toe game problem

Search Result 5, Processing Time 0.02 seconds

Enhanced strategic Monte-Carlo Tree Search algorithm to play the game of Tic-Tac-Toe (삼목 게임을 위해 개선된 몬테카를로 트리탐색 알고리즘)

  • Lee, Byung-Doo
    • Journal of Korea Game Society
    • /
    • v.16 no.4
    • /
    • pp.79-86
    • /
    • 2016
  • Monte-Carlo Tree Search(MCTS) is a best-first tree search algorithm and has been successfully applied to various games, especially to the game of Go. We evaluate the performance of MCTS playing against each other in the game of Tic-Tac-Toe. It reveals that the first player always has an overwhelming advantage to the second player; and we try to find out the reason why the first player is superior to the second player in spite of the fact that the best game result should be a draw. Since MCTS is a statistical algorithm based on the repeated random sampling, it cannot adequately tackle an urgent problem that needs a strategy, especially for the second player. For this, we propose a strategic MCTS(S-MCTS) and show that the S-MCTS player never loses a Tic-Tac-Toe game.

Approximation of Polynomials and Step function for cosine modulated Gaussian Function in Neural Network Architecture (뉴로 네트워크에서 코사인 모듈화 된 가우스함수의 다항식과 계단함수의 근사)

  • Lee, Sang-Wha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.115-122
    • /
    • 2012
  • We present here a new class of activation functions for neural networks, which herein will be called CosGauss function. This function is a cosine-modulated gaussian function. In contrast to the sigmoidal-, hyperbolic tangent- and gaussian activation functions, more ridges can be obtained by the CosGauss function. It will be proven that this function can be used to aproximate polynomials and step functions. The CosGauss function was tested with a Cascade-Correlation-Network of the multilayer structure on the Tic-Tac-Toe game and iris plants problems, and results are compared with those obtained with other activation functions.

The Education Program Model for the Thinking Extension Ability of the Gifted in Information Based on Game Tree (게임 트리에 기반한 정보영재의 사고력 신장을 위한 교육 프로그램 모형)

  • Jung, Deok-Gil;Kim, Byung-Joe
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1228-1234
    • /
    • 2007
  • In this paper, we develop the thinking extension education program for the gifted students of information and prove the validity and effectiveness of the proposed model by presenting the Tic-tac-toe problem as the practical example of the information-gifted students. This model consists of four phases which has the game tree as data structure and the search of game lee as control structure. And the search of game tree becomes the basis of the thinking extension education program. This model gives the help for students to learn representing the problem as tree structure and solving the problem of tree structure using the search method of game tree. The internal ability of the information-gifted for thinking extension of this education program contains the fluency, perceptiveness, originality, power of concentration, imaginative power, analyzing skills, pattern recognition, space sense, synthesizing, problem-solving.

The Education Program Model for the Thinking Extension Ability of the Gifted in Information Based on Game Tree (게임 트리에 기반한 정보영재의 사고력 신장을 위한 교육 프로그램 모형)

  • Jung, Deok-Gil;Kim, Byung-Joe
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.310-314
    • /
    • 2007
  • In this paper, we develop the thinking extension education program for the gifted students of information, and prove the validity and effectiveness of the proposed model by presenting the Tic-tac-toe problem as the practical example of the information-gifted students. This model consists of four phases which has the game tree as data structure and the search of game tree as control structure. And the search of game tree becomes the basis of the thinking extension education program. This model gives the help for students to learn representing the problem as tree structure and solving the problem of tree structure using the search method of game tree. The internal ability of the information-gifted for thinking extension of this education program contains the fluency, perceptiveness, originality, power of concentration, imaginative power, analyzing skills, pattern recognition, space sense, synthesizing, problem-solving.

  • PDF

The UCT algorithm applied to find the best first move in the game of Tic-Tac-Toe (삼목 게임에서 최상의 첫 수를 구하기 위해 적용된 신뢰상한트리 알고리즘)

  • Lee, Byung-Doo;Park, Dong-Soo;Choi, Young-Wook
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.109-118
    • /
    • 2015
  • The game of Go originated from ancient China is regarded as one of the most difficult challenges in the filed of AI. Over the past few years, the top computer Go programs based on MCTS have surprisingly beaten professional players with handicap. MCTS is an approach that simulates a random sequence of legal moves until the game is ended, and replaced the traditional knowledge-based approach. We applied the UCT algorithm which is a MCTS variant to the game of Tic-Tac-Toe for finding the best first move, and compared it with the result generated by a pure MCTS. Furthermore, we introduced and compared the performances of epsilon-Greedy algorithm and UCB algorithm for solving the Multi-Armed Bandit problem to understand the UCB.