• Title/Summary/Keyword: TiO2-CeO2

Search Result 146, Processing Time 0.023 seconds

Catalytic Wet Air Oxidation by TiO2 Supported Mn-Ce Based Catalysts (Mn-Ce계/TiO2 촉매에 의한 아세트산의 습식산화 반응특성)

  • Park, K.S.;Park, J.W.;Kim, Y.J.;Yoon, W.L.;Park, J.S.;Rhee, Y.W.;Kang, Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2263-2273
    • /
    • 2000
  • Catalytic wet air oxidation of acetic acid over Mn-Ce based catalysts deposited on various supports ($SiO_2$, $TiO_2$, $ZrO_2$), $ZrSiO_4$, $ZrO_2(10wt%)/TiO_2$) have been carried out in high pressure microreactors. Also, promotional effects by small addition(O.5~1.0 wt%) of p-type semiconductors (CoO, $Ag_2O$, SnO) have been investigated. From the screening tests for initial activity ranking, both Mn(2.8)-Ce(7.2 wt%) and Ru(O.4)Mn(2.7)-Ce(6.9 wt%) supported on $TiO_2$ were selected as the promising reference candidates. In $Mn-Ce/TiO_2$ reference catalyst, addition of small amount of each p-type semiconductor (Co, Sn and Ag) resulted in activity promotional effect and the degree of the increase was in the following order: Co> Ag > Sn. Especially, $Mn-Ce/TiO_2$ promoted with 0.5 wt% Co gave the 2.6 folds activity increase compared to the reference case attributing to the surface area increase as well as synergy effect. In $Ru-Mn-Ce/TiO_2$ reference catalyst, only Co(1.0 wt%) promoted case showed a little reaction rate increase.

  • PDF

RF Sputtered $SnO_2$, Sn-Doped $In_2O_3$ and Ce-Doped $TiO_2$ Films as Transparent Counter Electrodes for Electrochromic Window

  • 김영일;윤주병;최진호;Guy Campet;Didier Camino;Josik Portier;Jean Salardenne
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.107-109
    • /
    • 1998
  • The $SnO_2$, Sn-doped $In_2O+3\; and \;Ce-doped\; TiO_2$ films have been prepared by RF sputtering method, and their opto-electrochemical properties were investigated in view of the applicability as counter electrodes in the electrochromic window system. These oxide films could reversibly intercalate $Li^+$ ions owing to the nanocrystalline texture, but remained colorless and transparent. The high transmittance of the lithiated films could be attributed to the prevalence of the $Sn^{4+}/Sn^{2+}\; and\; Ce^{4+}/Ce^{3+}$ redox couples having 5s and 6s character conduction bands, respectively. For the Ce-doped $TiO_2$ film, $(TiO_2)_{1-x}(CeO_2)_x$, an optimized electrochemical reversibility was found in the film with the composition of x = 0.1.

Characterization Studies for the Selective Catalytic Oxidation of Ammonia Utilizing Ce/TiO2 Catalyst (Ce/TiO2 촉매를 이용한 암모니아의 선택적 산화반응 특성 연구)

  • Lee, Hyun Hee;Kim, Ki Wang;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.494-498
    • /
    • 2013
  • In this study, selective catalytic oxidation (SCO) of $NH_3$ using $Ce/TiO_2$ catalyst was examined to control the slipped NH3 from various pollutants. It was found that the catalytic activity increased with increasing the Ce loadings till reaching 10 wt% Ce loading. However, when Ce loaded over 10 wt%, the activity of catalysts rather decreased than that of catalysts, below 10 wt% Ce. Therefore, the composition of $Ce/TiO_2$ catalyst optimized in this study can be applied to industrial fields.

Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts (Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2017
  • Hydrogen production via steam reforming of liquefaction liquid from marine algae over hydrothermal liquefaction was carried out at 873 ~ 1073 K with a commercial catalyst and Ni based $K_2Ti_xO_y$ added catalysts. Liquefaction liquid obtained by hydrothermal liquefaction (503 K, 2 h) was used as a reactant and comparison studies for catalytic activity over different catalysts (FCR-4-02, $Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$ and Ni/$K_2Ti_xO_y$-MgO), reaction temperature were performed. Experimental results showed Ni/$K_2Ti_xO_y$ based catalysts ($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, Ni/$K_2Ti_xO_y-ZrO_2$/ $CeO_2$ and Ni/$K_2Ti_xO_y$-MgO) have a higher activity than commercial catalyst (FCR-4-02) and In particular, a product composition was different depending on support materials. An acidic support ($Al_2O_3$) and a basic support (MgO) led to a higher selectivity for CO while a neutral support ($SiO_2$) and a reducing support ($ZrO_2/CeO_2$) resulted in a higher $CO_2$ selectivity due to water gas shift reaction.

Biotemplate Synthesis of Micron Braid Structure CeO2-TiO2 Composite and Analysis of its Catalytic Behavior for CO Oxidation

  • Wang, Chencheng;Jing, Lutian;Chen, Mengpin;Meng, Zeda;Chen, Zhigang;Chen, Feng;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • A series of $CeO_2-TiO_2$ composite samples with different Ce/Ti molar ratios were prepared by the paper template. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm a face-centered cubic lattice of $CeO_2$ with Ce/Ti =8:2 or 9:1 and a two phase mixture of anatase titania and face-centered cubic ceria with Ce/Ti = 7 : 3. The field emission scanning electron microscopy (FESEM) results suggest that the products are micron braid structures consisting of fibers with diameters in a range of $1-6{\mu}m$ and lengths of several hundred micrometers. $N_2$ absorption-desorption testing shows that the composite at Ce/Ti molar fraction of 8 : 2 has the largest BET surface area (about $81m^2{\cdot}g^{-1}$). Compared to the pure $CeO_2$ sample, the composites show superior catalytic activity for $H_2$ reduction and CO oxidation. For the micron braid structure $CeO_2-TiO_2$ composite (Ce/Ti = 8 : 2), due to the high surface area and the solid solution with appropriate $Ti^{4+}$ incorporation, the CO conversion at about $280^{\circ}C$ was above 50% and at $400^{\circ}C$ was 100%.

Microwave Dielectric Properties of the MST Ceramics with addition of Ce (Ce첨가에 따른 MST 세라믹스의 마이크로파 유전특성)

  • Choi, Eui-Sun;Park, In-Gil;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.430-433
    • /
    • 2001
  • The $0.96MgTiO_{3}-0.04SrTiO_{3}+xCe(x=0{\sim}1.6wt%)$ ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were $1300^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite $SrTiO_{3}$ and ilmenite $MgTiO_{3}$ structures were coexisted in the $0.96MgTiO_{3}-0.04SrTiO_{3}+xCe(x=0{\sim}1.6wt%)$ ceramics. The dielectric constant$(\varepsilon_{r})$ was increased with addition of Ce. The temperature coefficient of resonant frequency$(\Gamma_{f})$ was gradually varied from positive value to the negative value with increasing the Ce. The temperature coefficient of resonant frequency of the $0.96MgTiO_{3}-0.04SrTiO_{3}+0.2Ce$ ceramics was near zero, where the dielectric constant, quality factor, and $\Gamma_{f}$ were 20.68, 50,272 and ${-0.5ppm/^{\circ}C}$, respectively.

  • PDF

Microwave Dielectric Properties of the MST Ceramics with Addition of Ce (Ce첨가에 따른 MST 세라믹스의 마이크로파 유전특성)

  • 최의선;박인길;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.430-433
    • /
    • 2001
  • The 0.96MgTiO$_3$-0.04SrTiO$_3$+xCe(x=0∼1.6 wt%) ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were 1300$^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite SrTiO$_3$ and ilmenite MgTiO$_3$ structures were coexisted in the 0.96MgTiO$_3$-0.04SrTiO$_3$+xCe(x=0∼1.6 wt%) ceramics. The dielectric constant($\varepsilon$$\sub$r/) was increased with addition of Ce. The temperature coefficient of resonant frequency($\tau$$\sub$f/) was gradually varied from positive value to the negative value with increasing the Ce. The temperature coefficient of resonant frequency of the 0.96MgTiO$_3$-0.04SrTiO$_3$+0.2Ce ceramics was near zero, where the dielectric constant, quality factor, and $\tau$$\sub$f/ were 20.68, 50, 272 and -0.5pm/$^{\circ}C$, respectively.

  • PDF

The Complete Oxidation of Ethanol at Low Temperature over a Novel Pd-Ce/γ-Al2O3-TiO2 Catalyst

  • Wang, Yanping;Zhao, Jinshuang;Wang, Xiaoli;Li, Zhe;Liu, Pengfei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2461-2465
    • /
    • 2013
  • Pd-$Ce/{\gamma}-Al_2O_3-TiO_2$ catalysts were prepared by combined sol-gel and impregnation methods. Transmission electron microscopy, X-ray diffraction, $H_2$-temperature-programmed reduction, $O_2$-temperature-programmed desorption, and ethanol oxidation experiments were conducted to determine the properties of the catalysts. Addition of an optimal amount of Ce improved the performance of the $Pd/{\gamma}-Al_2O_3-TiO_2$ catalyst in promoting the complete oxidation of ethanol. The catalyst with 1% Ce exhibited the highest activity, and catalyzed complete oxidation of ethanol at $175^{\circ}C$; its selectivity to $CO_2$ reached 87%. Characterization results show that addition of appropriate amount of Ce could enrich the PdO species, and weaken the Pd-O bonds, thus enhancing oxidation ability of the catalyst. Meanwhile, the introduction of $CeO_2$ could make PdO better dispersed on ${\gamma}-Al_2O_3-TiO_2$, which is beneficial for the improvement of the catalytic oxidation activity.

Fabrication of YBCO superconducting film with $CeO_{2}/BaTiO_{3}$double buffer layer ($CeO_{2}/BaTiO_{3}$ 이중완충막을 이용한 YBCO 박막 제작)

  • 김성민;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.790-793
    • /
    • 2000
  • We have fabricated good quality superconducting YBa$_2$Cu$_3$$O_{7-x}$(YBCO) thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrates with CeO$_2$and BaTiO$_3$buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. YBCO film with CeO$_2$ single buffer layer shows T$_{c}$ of 71.64 K and the grain size less than 0.1 ${\mu}{\textrm}{m}$. When BaTiO$_3$is used as a single buffer layer, the grain size of YBCO is observed to be larger than that of YBCO/CeO$_2$by 200 times and the transition temperature of the film is enhanced to be about 84 K. CeO$_2$/BaTiO$_3$double buffer layer has been adopted to enhance the superconducting properties, which results in the enhancement of the critical temperature and the critical current density to be about 85 K and 8.4 $\times$ 10$^4$ A/cm$^2$ at 77 K, respectively mainly due to the enlargement of the grain size of YBCO film.ilm.

  • PDF

Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR (저온 H2-SCR용 PtNi/W-TiO2 촉매에 조촉매 CeO2가 NOx 저감에 미치는 영향)

  • Jungsoo Kim;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.313-320
    • /
    • 2023
  • In order to increase the usability of H2-SCR, the NOx removal characteristics with catalyst powder of PtNi/CeO2-W-TiO2 using Ce as a co-catalyst was synthesized and coated on a porous metal structure (PMS) were evaluated. Catalyst powder of PtNi/CeO2-W-TiO2(PtNi nanoparticles onto W-TiO2, with the incorporation of ceria (CeO2) as a co-catalysts) was synthesized and coated onto a porous metal structure (PMS) to produce a Selective Catalytic Reduction (SCR) catalyst. H2-SCR with CeO2 as a co-catalyst exhibited higher NOx removal efficiency compared to H2-SCR without CeO2. Particularly, at a 10wt% CeO2 loading ratio, the NOx removal efficiency was highest at 90℃. As the amount of catalyst coating on PMS increased, the NOx removal efficiency was improved below 90℃, but it was decreased above 120℃. When the space velocity was changed from 4,000 h-1 to 20,000 h-1, the NOx removal efficiency improved at temperatures above 120℃. It was expected that the use of the catalyst could be reduced by applying the PMS with excellent specific surface area as a support.