• 제목/요약/키워드: TiO2 nanoparticles

검색결과 398건 처리시간 0.026초

$TiO_2$ 나노입자를 이용한 전자종이 제조 (Preparation of Electronic Paper using $TiO_2$ Nanoparticles)

  • 이남희;김중희;홍완식;장문익;안진호;황종선;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.97-102
    • /
    • 2004
  • 용액 중에서 나노입자의 전기영동 특성을 이용한 전자종이용 잉크 제조를 위해 $TiO_2$ 나노입자를 저유전율 용매인 cyclohexane에 혼합한 후 용매와 용질의 비중차를 줄이기 위해 분말 상 polyethylen을 첨가하여 high energy milling의 방법으로 입자분쇄와 동시에 입자 표면에 고분자 풍을 코팅하였다. 용액내의 입자 분산성 향상과 용매 착색을 위하여 계면활성제와 oil-blue N을 첨가한 후 전자종이용 잉크를 제조하여 측정한 제타 전위 결과 cyclohexane 내에서 $TiO_2$의 제타전위는 -40mV 정도였으나 polyethylene으로 코팅한 후 계면활성제를 첨가하였을 경우 최대 -110mV 이상의 높은 값을 나타내었다. 실제 디스플레이 특성을 평가하기 위해 포토리소그래피를 이용하여 3인치 크기의 ITO glass 위에 $10{\mu}m$의 크기를 갖는 십자형의 격벽을 $40{\mu}m$의 높이로 균일하게 형성한 후 합성된 전자잉크로 주입하여 상부전극과 하부전극사이에 UV 경화제를 도포하여 UV 접합을 실시하였다. 격벽 내에서 입자의 mobility를 측정하여 환산된 전자잉크의 응답속도는 0.1cm/sec로 측정되었으나, 전기영동시 입자들의 움직임에 따른 반사광의 파형을 측정한 경우 0.07cm/sec의 응답속도를 나타내었다.

  • PDF

Photodegradation of Volatile Organic Compound (VOC) Through V-Doped or CuOx-grafted $TiO_2$ nanoparticles

  • Kim, Beum Woo;Kim, Seonmin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.271.1-271.1
    • /
    • 2013
  • Titania is usually used in sun-screens, tooth paste, and other daily used objects as a pigment. However, scientists have focused on titania as photocatalyst due to its excellent activities. By fabricating vanadium doped TiO2 and CuOx co-catalyzed TiO2 nano-size filter, the degradation level of the volatile organic compound (VOC) concentration was tested using 365nm UV LED as light source in a closed chamber. Main purpose for this test is to evaluate the activities of various catalysts for degrading the VOCs which are detrimental to human body and toluene and p-xylene were chosen in the VOC removal test. Target gas materials were injected into the test chamber with dry air as carrier gas which was flowed into the gas washer bottle filled with liquid form of VOC substance. When the VOC gas flows into the chamber, it is circulated by 200 mm fan in order to contact with the set-up filter on the aluminum holder. Target gas concentration in the chamber was monitored using VOC detector (miniRae3000, Raesystems) which was also placed inside the chamber. With the measured concentration, the VOC degradation efficiency and the degradation rate were evaluated and used to compare the catalytic activities.

  • PDF

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

높은 결정성을 갖는 이산화티탄 나노입자의 합성 (Synthesis of Titanium Dioxide Nanoparticles with a High Crystalline Characteristics)

  • 김기출
    • 융합정보논문지
    • /
    • 제7권5호
    • /
    • pp.53-58
    • /
    • 2017
  • 석유 고갈의 시대에 저가이면서 반투명한 특징을 갖고 있는 염료감응형 태양전지(DSC)는 1991년 $Gr{\ddot{a}}tzel$의 연구결과 보고 이후 많은 주목을 받아왔다. 염료감응형 태양전지의 광전극의 빛 수확 성능을 증진시키고, 궁극적으로 광전변환효율을 향상시키기 위하여 다양한 구조를 갖는 산란층이 광전극 소재로 제안되었다. DSC 광전극의 산란층에서 산란의 중심으로는 지름이 250 - 300 nm 정도의 크기를 갖는 비교적 큰 이산화티탄 나노입자가 필요하다. 본 연구에서는 변형된 졸겔 공정을 이용하여 약 300 nm 크기의 이산화티탄 나노결정을 합성하였다. XRD와 TEM 분석결과에 의하면, 합성된 이산화티탄 나노입자는 아나타제 상의 단결정 특성을 나타내었다. 합성된 이산화티탄 나노입자를 이용하여 스핀 코팅 공정으로 제조된 이산화티탄 박막의 광학적 투과율은 550 nm 파장에서 약 50%로 측정되었다. 이처럼 적당한 투과율은 DSC 산란층의 산란 중심으로 사용하기에 적합하며, DSC의 광전변환효율 향상에 적절하게 기여할 것으로 기대된다.

Photovoltaic Behavior of Dye-sensitized Long TiO2 Nanotube Arrays

  • Kim, Sang-Mo;Kim, Hark-Jin;Kim, Yong-Joo;Lim, Goo-Il;Choi, Young-Sik;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.4035-4040
    • /
    • 2011
  • Long $TiO_2$ nanotube (NT) arrays, prepared by electrochemical anodization of Ti foils, have been utilized as dye-adsorbing electrodes in dye-sensitized solar cells (DSCs). By anodizing for 1-24 hr and subsequent annealing, highly crystallized and tightly-adhered NT arrays were tailored to 11-150 ${\mu}m$ lengths, ~90 nm innerpore diameter and ~30 nm wall thickness. I-V curves revealed that the photovoltaic conversion efficiency (${\eta}$) was proportional to the NT length up to 36 ${\mu}m$. Beyond this length, the ) was proportional to the NT length up to ${\eta}$ was still steadily increased, though at a much lower rate. For example, an ${\eta}$ of 5.05% at 36 ${\mu}m$ was increased to 6.18% at 150 ${\mu}m$. Transient photoelectron spectroscopic analyses indicated that NT array-based DSCs revealed considerably higher electron diffusion coefficient ($D_e$) and life time (${\tau}_e$) than those with $TiO_2$ nanoparticles (NP). Moreover, the electron diffusion lengths ($L_e$) of the photo-injected electrons were considerably larger than the corresponding NT lengths in all the cases, suggesting that electron transport in NT arrays is highly efficient, regardless of tube length.

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Becheikh, Nidhal;Eladeb, Aboulbaba;Ghazouani, Nejib
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.91-96
    • /
    • 2022
  • The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.

저온소성 TiO2 페이스트를 이용한 염료감응 태양전지의 특성 연구 (Study of the Characteristics of Low-Temperature Prepared TiO2 Paste for Dye-sensitized Solar Cells)

  • 정유라;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제26권5호
    • /
    • pp.380-384
    • /
    • 2013
  • In this paper, we have developed a low temperature process to make two type of paste by using $TiO_2$ nanoparticles(P25). The interconnections between substrate and $TiO_2$ films or link between particles of free-binder paste(FP1, FP2, FP3) is very poor. Therefore, the Titanium(IV) isopropoxide was added to the TP paste to improve the interconnection. Electron transport time (${\tau}_t$) and recombination time (${\tau}_r$) are analyzed by IMPS (intensity-modulated photocurrent spectroscopy) and IMVS(Intensity-modulated photovoltage spectroscopy). In the results, ${\tau}_t$ of TP paste based DSSCs (about $4.3{\times}10^{-3}$) is faster than other samples. ${\tau}_r$ is longer from $2.7{\times}10^{-2}$ s of FP2 to $3.0{\times}10^{-2}$ s of TP. A solar conversion efficiency (DSSCs) of TP is 3.54% for an incident solar energy of 100 mW $cm^{-2}$(meanwhile, 2.70% for DSSCs with FP2). The conversion efficiency is increased by 1.3 times.

Evaluation of dispersion degree of nanoparticles in TiO2/epoxy resin nanocomposites

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.338-344
    • /
    • 2014
  • The purpose of this study was to evaluate the dispersion degree of particles using a nanoindentation test for titanium oxide nanoparticles/epoxy resin nanocomposites. Thus, the effects of the particle size and weight fraction, dispersion agent, and position of the sample on the modulus and degree of particle dispersion in the nanocomposites were investigated. As a result, the dispersion degree of large particles was found to be better than that of smaller particles in composites. It could be found that the aggregation or agglomeration of small particles with large surface energy occurred more easily in nanocomposites because of the large specific surface area. The moduli of the upper side of the film-shaped sample obtained from a nanoindentation test were low scattering, while the values for the bottom side were high scattering. Thus, the dispersion situation of the nanoparticles on the upper side of film-shaped samples could be considered to be better than that for the bottom side. This could be concluded due to the non-uniform nanoparticle dispersion in the same sample. The modulus obtained from nanoindentation test increased slightly with the content of nanoparticles and increased with the indented depth for the same sample. The latter is presumably due to the increase in the accumulated particles facing the indenter with the indented depth. The nanoindentation test was found to be a useful method to evaluate the dispersion status of nanoparticles in nanocomposites.

Functionalized Raspberry-Like Microparticles obtained by Assembly of Nanoparticles during Electrospraying

  • Cho, Eun Chul;Hwang, Yoon Kyun;Jeong, Unyong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1784-1788
    • /
    • 2014
  • The present study suggests a novel method to produce raspberry-like microparticles containing diverse functional materials inside. The raspberry-like microparticles were produced from a random assembly of uniformly-sized poly(methyl methacrylate) (PMMA) nanoparticles via electrospraying. The solution containing the PMMA nanoparticles were supplied through the inner nozzle and compressed air was emitted through the outer nozzle. The air supply helped fast evaporation of acetone, so it enabled copious amount of microparticles as dry powder. The microparticles were highly porous both on the surface and interiors, hence various materials with a function of UV-blocking ($TiO_2$ nanoparticles and methoxyphenyl triazine) or anti-aging (ethyl(4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate)) were loaded in large amount (17 wt % versus PMMA). The surface and interior structures of the microparticles were dependent on the characteristics of functional materials. The results clearly suggest that the process to prepare the raspberry-like microparticles can be an excellent approach to generate functional microstructures.