• 제목/요약/키워드: TiO2 분말

검색결과 565건 처리시간 0.027초

1000rpm의 MA 장치로 TiO2 합성 시 형성된 분말의 특성 (The Property of TiO2 Powder Made with a 1000rpm MA Machine)

  • 이용복;권준현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.349-356
    • /
    • 2011
  • During the process of synthesis of $TiO_2$ powders using a high-speed planetary milling machine, Fe metallic powders were created which could be dissolved in sulfuric acid solution. With adding $NH_4OH$ solution to the $TiO_2$ powder, it was found that the crystal structure of the synthesized powder did not change and the crystal size decreased slightly. However, when the sulfur powder is mixed with $TiO_2$, the crystal structure of the MA powder was changed from anatase into rutile phase and its size decreased significantly which is in the order of nm in diameter. In case of mechanical alloying with $TiO_2$ powder only, the crystal structure of the powder was transformed into rutile phase and its size was greatly reduced into several nm. Because its size becomes fine, the energy band gap of its rutile phase is larger than that of bulk states (3.0eV).

초음파화학 반응에 의한 Ag 도핑 광촉매용 나노 TiO2 분말의 합성 (Synthesis of Nano-Scale Photocatalyic TiO2 Powder Doped with Ag by Sonochemistry Reaction)

  • 조성훈;이수완
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.169-173
    • /
    • 2009
  • In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop $TiO_2$ materials and $TiO_2$ devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create $TiO_2$ nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. $TiO_2$ powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.

자기펄스 성형법에 의한 TiO2 나노 분말의 치밀화 (Densification of TiO2 Nano Powder by Magnetic Pulsed Compaction)

  • 김효섭;이정구;이창규;구자명;홍순직
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.411-416
    • /
    • 2008
  • In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of $TiO_2$ bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and $TiO_2$ nano powder for the compaction of $TiO_2$ nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.

Ti$_{2}$O$_{2}$(C$_{2}$O$_{4}$)(OH)$_{2}$ . H$_{2}$O의 제조 및 특성평가 (Preparation and characterization of Ti$_{2}$O$_{2}$(C$_{2}$O$_{4}$)(OH)$_{2}$ . H$_{2}$O)

  • 최희락
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.44-48
    • /
    • 1997
  • During studies of the ripening reaction of titanium oxalate, a new crystalline phase has been found. The crystal system was determined to be orthormbic with space group $C222_1$. The unit cell parameters were refined to a=10.503(2)$\AA$ b=15.509(3)$\AA$ c=9.7000(1)$\AA$. The chemical formula of the crystal is Ti$_{2}$O$_{2}$(C$_{2}$O$_{4}$)(OH)$_{2}$. H$_{2}$O. When heated to temperatures between 31$0^{\circ}C$ and 38$0^{\circ}C$, the material became amorphous. Heated above 41$0^{\circ}C$ converted it into anatase-type titanium dioxide.

  • PDF

기계화학공정에 의한 (Pb, La)TiO3 나노 분말의 합성 및 소결 특성 연구 (Research on Synthesis and Sintering Behavior of Nano-sized (Pb, La)TiO3 Powders Using Mechano Chemical Process)

  • 이영인;구용성;이종식;좌용호
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.101-106
    • /
    • 2010
  • In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below $1050^{\circ}C$ by using $Bi_2O_3$ powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and $1150^{\circ}C$, the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding $Bi_2O_3$ and the specimen with the relative densitiy over 96% were fabricated below $1050^{\circ}C$ when 2 wt% of $Bi_2O_3$ was added.

Pb(Zr, Ti)$O_3$-Pb(Mg, Nb)$O_3$$MnO_2$첨가가 전기적 성질에 미치는 영향 (The effect of$ MnO_2$on the electrical properties in Pb(Zr, Ti)$O_3$/-Pb(Mg, Nb)$O_3$)

  • 김현재;조봉희;정형진;박창엽
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제1권2호
    • /
    • pp.152-161
    • /
    • 1988
  • Pb(Zr, Ti)O$^{3}$-Pb(Mg, Nb)O$^{3}$계에 MnO$_{2}$첨가량을 변화시켜 소결성, 미세구조, 유전상수, 비저항 및 압전특성에 미치는 영향을 XRD, EDAX 및 SEM을 이용하여 미세구조를 관찰하고 실험을 통하여 전기적 성질에 미치는 영향을 밝혔다. 비저항의 변화없이 그레인 성장이 억제되는 $MnO_{2}$의 첨가량은 0.4wt%이었으며 이때 분말의 합성이 촉진되어 소성된 시편의 밀도가 증가하였다. 그러나 고상반응의 범위를 벗어나는 과잉 $MnO_{2}$는 편석이 되어 그레인 경계상에 모임이 확인되었고 또한 기공을 형성하여 밀도를 낮추었다. $Mn^{+4}$$Mg^{+2}$ 와 치환되어 페로브스카이트 구조의 "A" 결핍을 유발하였으며 이것이 비저강을 감소시키는 원인으로 밝혀졌다.감소시키는 원인으로 밝혀졌다.

  • PDF

저전압용 $SrTiO_3$ : Al, Pr 적색 형광체 합성 및 발광특성 (Preparation and Low-Voltage Luminescent Properties of $SrTiO_3$:Al, Pr Red Phosphor)

  • 박정규;류호진;박희동;최승철
    • 한국재료학회지
    • /
    • 제8권7호
    • /
    • pp.601-606
    • /
    • 1998
  • 고상반응법으로 $SrTiO_3$ : AI, Pr 적색 형광체를 합성하였다. PL 스펙트럼과 CL 스펙트럼의 발광 강도를 소결 온도와 소결 시간등의 형광체의 제조 변수에 대하여 최적화 하였다. 열처리한 분말은 XRD 분석 결과 페로브스카이트구조를 보였고, PSD 분석결과 평균입자크기는 약 3~5$\mu\textrm{m}$이었다. 또한 분말의 주사 전자 현미경 사진에 의한면 구형을 갖는잘 결정화된 입자들이 관찰되었다. 특히, 본 연구에서 합성된 분말의 특성은 상용화된 $Y_2O_3: Eu 형광체 보다 저전압에서의 CL 특성이 더 우수하였으며, 이 형광체는 저전압에서 구동하는 FED에 응용할 가능성이 높을 것으로 생각된다.

  • PDF

마이크로파 수열법에 의한 PbTiO$_3$ PMN 세라믹분말의 합성 (Microwave Hydrothermal Sythesis of PbTiO$_3$ and PMN Ceramic Powders)

  • 배강
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.465-471
    • /
    • 1998
  • Lead titanate(PT) and lead magnesium niobate(PMN) ceramic powders were prepared by microwave hy-drothermal method using teflon bomb. Raw materials were Pb(NO3)2 and TiO2 for lead titanate and Pb(NO3)2 Nb2O5 and Mg(NO)3.6H2O for PMN with NaOH as mineralizer in both cases. in lead titanate synthsis rate of microwave hydrothermal method was faster three times than one f conventional hydrothermal methods In lead magnesium niobate synthsis the mixture of perovskite and pyrochlore phases was obtained by single step technique and the PMN was not obtained by double step technique due to low temperature limitation of teflon bomb.

  • PDF

졸-겔법으로 제조된 $xTiO_2$-$ySiO_2$ 분말에 의한 유기물의 광분해 (Photocatalytic Degradation of Organic Compounds over $xTiO_2$-$ySiO_2$ Powders Prepared by Sol-Gel Method)

  • 양천회;이봉철
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.130-136
    • /
    • 2008
  • $xTiO_2$-$ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area were measured. Considering the efficiency of the ethanol and phenol degradation using the catalyst, the conclusions were obtained as follows: By means of X-ray analysis of $xTiO_2$-$ySiO_2$ powder that is obtained from Titanium and Silicon alkoxide by sol-gel process, it is shown that crystal structure of anatase type is a dominating structure and, on the other hand, the structure of rutile also partly exists. The increase of $SiO_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. It is shown that more than 90% of ethanol and phenol are degraded when reaction time is about three and an hours, and the maximum degradation rate of ethanol and phenol is shown in $60TiO_2$-$40SiO_2$ catalyst.

고에너지 밀링 및 합성반응에 의한 Fe-TiC 복합분말 제조 (Fabrication of Fe-TiC Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis)

  • 안기봉;이병훈;이용희;;김지순
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.53-59
    • /
    • 2013
  • Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at $900^{\circ}C$ for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional $TiH_2$ powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at $1000{\sim}1200^{\circ}C$ for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.