• 제목/요약/키워드: TiFe

검색결과 1,422건 처리시간 0.029초

고온자전 합성법에 의해 제조된 TiNiFe합금에서 Incommensurate 상의 형성 (Formation of Incommensurate Phase in TiNiFe Processed by Self-propagating High Temperature Synthesis Method)

  • 조재섭;김도향;김용석
    • Applied Microscopy
    • /
    • 제26권3호
    • /
    • pp.379-388
    • /
    • 1996
  • Structure of premartensite in $Ti_{50}Ni_{49}Fe_1\;and\;Ti_{50}Ni_{50}$ prepared by self-propagating high temperature synthesis (SHS) method has been investigated by a detailed transmission electron microscopy. $Ti_{50}Ni_{49}Fe_1$ consists of microdomain area and needle type domain area. On the other hand, $Ti_{50}Ni_{50}$ consists of microdomain-free and microdomain area, and needle type domain area. Various types of extra superreflections, such as 1/2<100>, 1/2<110> and 1/4<210> type superreflection have been observed in the selected area electron diffractions from microdomain area. Such extra superreflections are due to transformation from B2 structure to distorted B2 structure or premartensite. The present study shows that incommensurate phase forms as an intermediate phase during martensitic transformation. Particularly, in Fe-free $Ti_{50}Ni_{50}$, two types of matrix phases have been observed, microdomain and microdomain-free area. Types of extra superreflections in $Ti_{50}Ni_{50}$ are different from those in $Ti_{50}Ni_{49}Fe_1$, i.e. 1/7<321> type superreflections have been observed, instead of 1/2<110>, 1/2<100>, 1/4<210> types in $Ti_{50}Ni_{49}Fe_1$.

  • PDF

TiFe금속간 화합물의 Zr과 Ce첨가와 냉각속도에 따른 응고 조직 변화 및 기계적 특성 (Microstructure and Mechanical Property of TiFe Compounds with Zr or Ce Prepared at Different Solidification Rates)

  • 노혜인;최창완;이승훈
    • 한국주조공학회지
    • /
    • 제39권2호
    • /
    • pp.21-25
    • /
    • 2019
  • Microstructural and corresponding hardness changes of TiFe compounds with Zr (0~6 at%) or Ce (0~3 at%) were studied using samples prepared at different solidification rates. In arc-melted (TiFe)-Zr samples, the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases formed in the TiFe matrix, while in the (TiFe)-Ce sample, the $CeO_2$ phase formed along the grain boundary of the TiFe matrix. As the Zr content was increased, the volume fractions of the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases increased, forming a network structure. Accordingly, the hardness values of the samples also increased. With a small addition of Ce of approximately 0.1 at%, the as-cast microstructure could be effectively refined, reducing the average grain boundary diameter from ${\sim}100{\mu}m$ to ${\sim}14{\mu}m$. In the rapidly solidified sample prepared through a melt-spinning method, the constituent phases were identical to those of the arc-melted samples while the grains were refined. The microstructural changes of TiFe alloys can affect the hydrogen storage ability as well as the mobility of the hydrogen atoms in the alloys.

복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성 (Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property)

  • 구본율;안효진
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.423-428
    • /
    • 2014
  • We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

Sn 첨가에 따른 극미세 Ti-Fe-Sn 합금의 미세조직 및 기계적 성질 변화 (Sn Effects on Microstructure and Mechanical Properties of Ultrafine Ti-Fe-Sn Alloys)

  • 한준희;송기안;피동혁;방창욱;김기범
    • 한국주조공학회지
    • /
    • 제28권2호
    • /
    • pp.69-73
    • /
    • 2008
  • In the present study, microstructural evolution and mechanical properties of Ti-Fe-Sn ultrafine eutectic alloys have been investigated. Ultrafine eutectic microstructure consisting of a mixture of ${\beta}$-Ti solid solution and TiFe intermetallic compound homogeneously formed in $(Ti_{70.5}Fe_{29.5})_{100-x}Sn_x$ alloys with x = 0, 1 and 3. Addition of Sn is effective to modify the eutectic colony into the spherical shape with decreasing the lamellar spacing and colony size. This results in enhancing the macroscopic plasticity up to 3.1% of the Ti-Fe-Sn ultrafine eutectic alloys.

나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성 (Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint)

  • 김대원;마영길;김종석
    • 공업화학
    • /
    • 제31권1호
    • /
    • pp.43-48
    • /
    • 2020
  • 본 연구에서는 침전과 수열처리에 의해 나노입방체와 나노막대구조를 갖는 Fe2O3 나노입자를 합성하였다. Fe2O3 나노 입자 표면에 TiO2가 20 nm 두께로 코팅된 Fe2O3/TiO2 core-shell (CS) 복합재료를 합성하였다. Fe2O3/TiO2 CS를 화학적 에칭과 열처리에 의해 Fe2O3/TiO2 CS에서 Fe2O3/TiO2 yolk-shell (YS) 형태의 복합재료를 제조하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 Fe2O3와 Fe2O3/TiO2 CS 및 Fe2O3/TiO2 YS 안료의 물리적 특성을 측정하였다. 안료를 poly acrylate (PA) 수지에 혼합한 도료들의 일사반사율과 색상변화는 UV-Vis-NIR 분석으로 차열 온도는 실험실에서 제작한 차열 온도 측정기를 통해 측정하였다. Fe2O3/TiO2 YS 적색 안료를 사용한 PA 도료는 우수한 근적외선 반사율을 보였으며, Fe2O3 안료를 사용한 도료에 비해 차열 온도가 13 ℃ 감소하였다.

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S.;Borse, P. H.;Lee, J. S.;Lim, K. T.;Jung, O. S.;Jeong, E. D.;Bae, J. S.;Kim, H. G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.95-99
    • /
    • 2011
  • $CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Surface and Interface Magnetism in CoTi/FeTi/CoTi(110)

  • Lee G.H.;Jin Y. J.;Lee J. I.;Hong S.C.
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.1-4
    • /
    • 2005
  • We investigated the electronic structures and the magnetic properties of Ti-based intermetallic system of CoTi/FeTi/CoTi(110) surface and interface by using the all-electron full potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The calculated magnetic moments of interface Co and Fe atoms are 0.65 and 0.15 μ/sub B/, respectively. Surface and interface magnetism of CoTi/FeTi/CoTi(110) are discussed using the calculated density of states (DOS) and the spin densities.

유성볼밀공정으로 제조된 Fe-TiC 복합재료 분말 (Fe-TiC Composite Powders Fabricated by Planetary Ball Mill Processing)

  • 이병훈;안기봉;배상원;배선우;;김병기;김지순
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.208-215
    • /
    • 2015
  • Fe-TiC composite powders were fabricated by planetary ball mill processing. Two kinds of powder mixtures were prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, $TiH_2$, Carbon) powders, respectively. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) were varied. For (Fe, $TiH_2$, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing was added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity were investigated.

Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.433-438
    • /
    • 2010
  • Fe-carbon/$TiO_2$ composites were prepared by a sol-gel method using AC, ACF, CNT and $C_{60}$ as carbon precursors and were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The activity of the prepared photocatalysts was investigated by degradation reaction of methylene blue (MB) irradiated with UV lamp. Effects of different carbon sources and irradiation time on photocatalytic activity were also investigated. The results showed that the photocatalytic activity of the Fe-carbon/$TiO_2$ composites was much higher than that of pristine $TiO_2$ and Fe/$TiO_2$ composites. The prominent photocatalytic activity of Fecarbon/$TiO_2$ composites could be attributed to both the effects of photo-adsorption and electron transfer by carbon substrate. In addition, the higher photocatalytic activity of Fe-carbon/$TiO_2$ composites can be compared with that of carbon/$TiO_2$ and Fe /$TiO_2$ composites due to cooperative effects between Fe and carbon.