• Title/Summary/Keyword: TiC particle

Search Result 311, Processing Time 0.011 seconds

Preparation and Characterization of Fine $TiO_2$ Powders by Vapor-Phase Hydrolysis of TiCl4 (사염화티타늄의 기상가수분해반응에 의한 $TiO_2$ 미분의 제조 및 입자특성)

  • 염선민;김광호;신동원;박찬경
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.525-532
    • /
    • 1992
  • TiO2 fine powder was synthesized in the gas phase by chemical vapor deposition using hydrolysis of TiCl4. Content of rutile phase in the powder was investigated. Powder characteristics such as size, crystallinity and morphology were also studied by means of TEM, SEM and XRD. Rutile phase in TiO2 powder started to be formed from 100$0^{\circ}C$ and the content increased with the reaction temperature and TiCl4 concentration. As the temperature increased from 80$0^{\circ}C$ to 140$0^{\circ}C$, the primary particle size increased while secondary particle size decreased. Spherical secondary particle with fine primary crystals agglomerated was produced at low temperature of 80$0^{\circ}C$ whereas the grown primary particle being final particle size was produced at higher temperature of 140$0^{\circ}C$. Other effects of TiCl4 and H2O partial pressures on particle size were also reported in this study.

  • PDF

Fabrication of Fe-TiC Composite by High-Energy Milling and Spark-Plasma Sintering

  • Tuan, N.Q.;Khoa, H.X.;Vieta, N.H.;Lee, Y.H.;Lee, B.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.338-344
    • /
    • 2013
  • Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark-plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark-plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and fracture toughness of Fe-TiC sintered compact were investigated.

Study about The Effect Alcohol and The Temperature Exert on $TiO_2$ Particle Production by Sedimentation Method (침전법을 이용한 이산화티탄 입자 제조에 알콜과 온도가 미치는 영향에 관한 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.495-502
    • /
    • 2012
  • Using the Sedimentation method it's possible to get $TiO_2$ particle from which by this research, $TiO_2$ particle was produced. The parameter in the kind of the temperature and the alcohol solvent used $TiO_2$ particle production investigated crystal structure of $TiO_2$ particle and the influence exerted on the size of the particle and the form. After scanning electron microscope (SEM) analyzed methyl alcohol, iso-propylalcohol and tert-butylalcohol used by a solvent at the $TiO_2$ particle production, iso-propylalcohol was most effective. And after an thermogravimetric analyzer method was used, the anatase structure was maintained $500^{\circ}C$ by $200^{\circ}C$, but it was converted by the rutile structure by $800^{\circ}C$.

Microstructure and Mechanical Properties of Reaction-Bonded Sintering TiC-Based Composite Prepared by Ni-Ti Metal Infiltration (Ni/Ti 금속침투에 의한 반응결합소결 TiC계 복합체의 미세구조 및 기계적 특성)

  • 한인섭;우상국;김홍수;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.995-1002
    • /
    • 1996
  • The TiC-(Ni/Ti) composites were prepared by reaction bonding between TiC preforms and the melted mixture of Ni/Ti metal the atomic ratio of which were the ranges of 0.3 to 3. And their microstructures phase composi-tions and mechanical properties were investigated. During reaction bonding Ni/Ti metal mixture had a good wettability an permeability with TiC preforms and pore-free and fully dense sintered bodies were fabricated. TiC particle shape changed from spherical to angular platelet-like and grain size was grown with Ni/Ti atomic ratio increasing from 0.3 to 1. whereas grain growth of TiC particle was restrained and its shape changed gain from angular platelet-like to spherical when Ni/Ti atomic ratio was more than 2. Maximum bending strength and fracture toughness were obtained at the Ni/Ti atomic ratio being 1 their values were 582 MPa and 11.1 MPa.m1/2 respectively.

  • PDF

Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC (SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링)

  • Hyunseop Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Preparation of Submicron Barium Titanate Powders. (초미립 $BaTiO_3$의 합성)

  • 안영필;김복희;황재석;유경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.278-282
    • /
    • 1984
  • Barium titanate powder was made by firing the complex hydroxide which had been synthesized with chemical wet process by the medium of $H_2O_2$. This experiment was done as following A mixed solution of $BaCl_2$, $TiCl_4$ and $H_2O_2$ with 1:1:10 mol ratio was prepared. Ammonium hydroxide was added into the mixed solution. In the range of pH 8-10 $BaTiO_3$ complex hydroxide was obtained and treated at room temperature 11$0^{\circ}C$, 20$0^{\circ}C$, 40$0^{\circ}C$ and $600^{\circ}C$. The results obtaiined from this experiment were as follows. At room temperature $BaTiO_3$ complex hydroxide was amorphous. Above 10$0^{\circ}C$ crystalline $BaTiO_3$ was obtained and particle size of $BaTiO_3$ was increased with elevated temperature. So the particle size of BaTiO3 could be controlled by the firing temperature. After treating $BaTiO_3$ complex hydroxide at 10$0^{\circ}C$ the average particle size of $BaTiO_3$ was 0.22$\mu\textrm{m}$.

  • PDF

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Preparation of BaTiO3 Powder in $BaO2-TiO2-Reduction Agent-PSCA (Particle Size Control Agent) System by SHS and Its Dielectric Properties (B3O2-TiO2-환원제-입자제어제계에서 자전연소합성법에 의한 BaTiO3분말의 제조 및 유전특성)

  • Yun, Ki-Seok;Lim, Sung-Jae;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.842-850
    • /
    • 2004
  • We have investigated on the preparation of BaTiO$_3$ powder at the system of BaO$_2$-TiO$_2$-Reduction ag.-PSCA by SHS. C and Mg were used as reduction agent, and NaCl was used as PSCA (Particle Size Control Agent). The effects of the various reduction agent and its concentration, particle size control agent, reaction mixture mass on the product in the preparation of BaTiO$_3$ powder at the optimum system by SHS were investigated. The optimum conditions for reaction system and composition were BaO$_2$+TiO$_2$+0.11 Mg +0.2C+0.75NaCl in the As atmosphere. NaCl as PSCA showed the effect of controlling the particle size of product as well as the combustion temperature. The particle size of BaTiO$_3$ synthesized at the optimum condition was about 0.5 ${\mu}{\textrm}{m}$. And as the mixture mass for the reaction was increased, the more stable combustion wave appeared. We have conducted the sintering experiment at the temperature of 130$0^{\circ}C$, the time of 2 h and the atmosphere of air to measure the dielectric properties of BaTiO$_3$ synthesised in this work, and the sample sintered in this condition showed 2,290 of dielectric constant at 10$0^{\circ}C$ and 13,890 at curie point (129$^{\circ}C$).

The synthesis and formation mechanism of the fine $BaTiO_3$ powders by ultrasonic spray pyrolysis (초음파 분무 열분해법에 의한 $BaTiO_3$ 미분말의 합성 및 형성기구 규명)

  • Heo, H.B.;Shin, K.C.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.178-189
    • /
    • 1994
  • Fine $BaTiO_3$ powder was synthesized from the various starting solution with 0.05 M by ultrasonic spray pyrolysis method. The conditions of synthesis were fixed on flow rate was 0.5 cm/sec, low temperature furnace was $300^{\circ}C$, and high temperatures furnace was $700^{\circ}C$. The formation procedure was investigated directly by SEM with the collected particle from the each reaction step. Also, the trace of particle in reaction tube was researched theoretically. Fine $BaTiO_3$ was synthesized only in the case of nitrate aqueous solution. The synthesized $BaTiO_3$ powder was porous and spherical which was consist of primary particle at the size of 19.1 nm. The formation procedure was as follows : the particle size decreased in drying step and then increased in initial thermal decomposition step. Finally, particle size was decreased to $0.42 {mu}m$. The trace of particle in reaction tube was also theoretically simulated and discussed.

  • PDF