• 제목/요약/키워드: TiAlN coating

검색결과 134건 처리시간 0.02초

다양한 색상 구현을 위한 물리적 박막 증착 공정에 관한 연구

  • 김병철;김왕렬;김현승;오철욱;송선구;국형원;권민철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.244.2-244.2
    • /
    • 2014
  • 금속, 플라스틱, 유리 등의 재료 표면에 다양한 색상을 표현하기 위해 일반적으로 습식 도금을 많이 적용하고 있다. 하지만 습식 도금은 공정 수가 많을 뿐만 아니라 위험물질 및 오염물질을 많이 사용하기 때문에 산업사고, 환경오염 등을 야기 시킨다. 따라서 본 연구에서는 친환경적 방법인 물리적기상증착(PVD ; Physical Vapor Deposition) 방식의 한 종류인 스퍼터링(Sputtering)으로 색상을 구현하였다. PVD 방식의 증착은 습식 도금 방식에 비해 친환경적이며, 전처리에서 후처리까지 한 공정으로 가능하다는 점이다. 스퍼터링은 PVD의 다른 방식인 E-beam 방식에 비해 대량생산을 할 수 있다는 장점이 있다. 양산형 스퍼터링 장비(${\Phi}1200mm{\times}H1400mm$)로 실험을 진행하였으며, 증착 물질은 Ti, Al, Cr 을 사용하였고, 반응성 가스(Reactive Gas) 로는 N2, C2H2 가스를 사용하였다. 전처리는 LIS (Linear Ion Source)로 식각(Etching) 하였고, 펄스직류전원공급장치(Pulsed DC Power Supply)를 사용하여 증착 하였으며, 증착시 기판에 bias (-100 V)를 인가 하였다. 그 결과 회색계열, 갈색계열 등 여러가지 색을 구현할 수 있었으며, 증착된 박막의 특성을 알아보기 위하여 색차계, 내마모 시험기, 연필경도 시험기를 사용하였다. 향후 후처리 공정으로 내지문(AF ; anti fingerprint coating) 박막 등과 같은 실용적인 박막을 증착할 계획이다.

  • PDF

Determination of Hg22+ Ions Using a Modified Glassy Carbon Electrode with 2,2':6':2''-Terpyridine

  • Kong, Young-Tae;Bae, Yun-Jung;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.346-350
    • /
    • 2002
  • A glassy carbon electrode (GCE) modified with 2,2':6':2”-terpyridine (2,2':6':2”-TPR) using a spin coating method was applied for the highly selective and sensitive analysis of a trace amount of $Hg_2^{2+}$ ions. Various experimental parameters, which influenced the response of the 2,2':6':2”-TPR modified electrode to $Hg_2^{2+}$ ions, were optimized. The linear sweep and differential pulse voltammograms for the 2,2':6':2”-TPR modified electrode deposited with Hg show a well-defined anodic peak at +0.65 V (vs. Ag|AgCl). After a 25 min preconcentration time in an $Hg_2^{2+}$ ion solution (0.1 M acetate buffer, pH 5.0), differential pulse voltammetry(DPV) with 2,2':6':2”-TPR modified electrode shows a linear response between $1.0\;{\times}\;10^{-6}M\;and\;2.0\;{\times}\;10^{-7}M$. The least-square treatment of these data produce an equation of I[${\mu}A$] = 0.031 + 0.005C with r = 0.980(n = 5). The detection limit of this electrode with linear sweep voltammetry and differential pulse anodic voltammetry were $2.0\;{\times}\;10^{-6}M\;and\;8.0\;{\times}\;10^{-8}M$, respectively. The presence of Pb, Fe, Cd, Ti, Ni, Co, Mg, Al, Mn, and Zn did not interfere in the analysis of the $Hg_2^{2+}$ ion. The 2,2':6':2”-TPR modified GCE has been successfully applied in determination trace amounts of Hg in a human urine sample.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF