• 제목/요약/키워드: TiAl intermetallic

검색결과 102건 처리시간 0.032초

Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포 (High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure)

  • 박규섭;강창용;이근진;정한식;정영관;복부양지
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate

저온 기계적 합금화한 nanocrystalline Al-5at.%Ti 합금의 압축변형거동 (The Compressive Deformation Behavior of Nanocrystalline Al-5at.%Ti Alloy Prepared by Mechanical Alloying at Low Temperature)

  • 정경화;오영민;김선진
    • 한국분말재료학회지
    • /
    • 제6권4호
    • /
    • pp.277-285
    • /
    • 1999
  • Mechanical properties of nanocrystalline Al-5at.%Ti alloy were investigated through high temperature compression test. Al-5at.%Ti nanocrystalline metal powders, which had finer and more equiaxed shape than those produced at room temperature, were produced by mechanical alloying at low temperature. The powders were successfully consolidated to 99fo of theoretical density by vacuum hot pressing. XRD and TEM analysis revealed that $Al_3Ti$ intermetallic compounds formed inside powders and pure Al region with coarse grains formed between powders, especially at triple junction. Mechanical properties in terms of hardness and strength were improved by grain size refinement, but ductility decreased presumably due to the formation of the weak interfaces between Al pool and powders.

  • PDF

B2-규칙 NiAl계에 $L2_1$$Ni_2AlTi$상의 석출거동에 관한 연구 (A Study on the Precipitation Behavior of $L2_1$-type $Ni_2AlTi$ Phase in B2-Ordered NiAl System)

  • 한창석
    • 열처리공학회지
    • /
    • 제20권4호
    • /
    • pp.187-194
    • /
    • 2007
  • A transmission electron microscope (TEM) investigation has been performed on the precipitation of $L2_1$-type $Ni_2AlTi$ phase in B2-ordered NiAl system. The hardness after solution treatment is high in NiAl-Ti alloys suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlTi$ precipitates keep a lattice coherency with the NiAl matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of NiAl-$Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.1% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

(${\gamma}-TiAl$ 금속간화합물에 Cr 및 N 첨가의 영향 (Effect of Cr and N Additions in ${\gamma}-TiAl$ Intermetallic Compounds)

  • 이호종
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.596-603
    • /
    • 1995
  • ${\gamma}-TiAl$ 금속간화합물에 크롬과 질소첨가의 영향을 관찰하기 위하여 첨가량에 따른 열처리 전후의 미세조직과 기계적 성질을 비교 분석하였다. 그 결과 질소첨가량이 증가할수록 결정립이 미세화되고 항복강도가 증가되었으며 크롬과 질소의 동시첨가의 경우가 이들의 효과가 현저하였다. 또한 이들 원소의 첨가로 $Ti_2AlN$이 제3상으로 생성되어 열처리시 ${\alpha}_2/{\gamma}$층상조직의 안정화를 보였으며 첨가량을 다량으로 하였을 때 결정립의 크기가 급격히 감소함에도 상온연성이 감소되는 것은 $Ti_2AlN$의 크기에 기인한 것으로 판단된다. 적정량의 크롬과 질소를 동시첨가하여 열처리시 상온연성 및 항복강도가 향상되었다.

  • PDF

Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향 (Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials)

  • 배동현;정수정;조영래;정원섭;정호신;강창룡;배동수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.