• Title/Summary/Keyword: TiAl Alloys

Search Result 335, Processing Time 0.023 seconds

Corrosion Analysis and Apatite Forming Ability of Ti and Ti-Alloys in SBF Solution (Ti과 Ti합금의 SBF에서 Apatite 형성 관찰 및 부식거동 테스트)

  • Lee Seung-Woo;Kim Yun-Jong;Choi Je-Woo;Park Joong-Keun;Kim Won-Soo;Kim Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.671-677
    • /
    • 2005
  • Ti and Ti alloys are known to have excellent corrosion properties, which is an important aspect for biocompability of these implants in human body. In our study, four types of samples (Cp-Ti, Ti-6Al-4V, $0.5wt.\%$ Fe-Ti and ECAP Ti) were tested for their apatite forming ability and corrosion properties. The micropolished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. Each samples was gently washed with distilled water and heat-treated at 600"C for 1 hour. The heat-treated samples were soaked in Simulated Body Fluid (SBF) solution at $36.5^{\circ}C$ in an incubator for different period of time. The test revealed that $0.5 wt.\%$ Fe-Ti showing faster apatite growth on the surface (7th day) compared to other samples. Polarization curve test (PCT) was also carried out to determine the corrosion resistance of each samples in SBF solution. ECAP-Ti showed highest corrosion resistance compared to any other samples. $0.5wt.\%Fe-Ti$ showed higher corrosion potential and corrosion current compared to other samples.

Development of New Titanium Alloys for Castings (주조용 티타늄 신합금 개발)

  • Kim, Seung-Eon;Jeong, Hui-Won;Hyeon, Yong-Taek;Kim, Seong-Jun;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

Effect of Area Ratio on Galvanic Corrosion Between Metallic Materials and GECM in 3.5% NaCl Solution (3.5% NaCl 수용액 중에서의 금속과 GECM의 갈바닉 부식에 미치는 면적비의 영향)

  • Kim, Y.S.;Lim, H.K.;Sohn, Y.I.;Yoo, Y.R.;Chang, H.Y.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Galvanic coupling between GECM(graphite epoxy composite material) and metallic materials can facilitate corrosion of metals and alloys because GECM is noble and electrically conductive. Galvanic corrosion is affected by many factors including metallic materials, area ratio, surface condition, and corrosivity. This work aims to evaluate the effect of area ratio on galvanic corrosion between GECM and several metals. In the case of glavanic coupling of carbon steel and Al to GECM, corrosion rate increased with increasing area ratio. Corrosion rate of sensitized STS 316S stainless steel decreased a little at an area ratio 1:1 but increased at an area ratio 30:1. It is considered to be due to that area ratio affects galvanic corrosion more in less corrosion resistant alloys. However, in case of STS 316 and Ti, galvanic coupling reduces corrosion rate by the formation of passive film.

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

Fabrication of Titanium alloy by Electromagnetic Continuous Casting (EMCC) Method for Medical Applications (전자기 연속 주조법을 이용한 의료용 타이타늄 합금 제작에 관한 연구)

  • Choi, Su-Ji;Lee, Hyun-Jae;Baek, Su-Hyun;Hyun, Soong-Keun;Jung, Hyun-Do;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Electromagnetic continuous casting (EMCC) was used to fabricate Ti-6Al-4V alloys with properties suitable for medical applications. Ti-6Al-4V alloy ingots fabricated by EMCC were subjected to heat treatment, such as residual stress removing (RRS), furnace cooling after solution treatment (ST-FC) and water-cooling after solution treatment (ST-WC), in order to obtain characteristics suitable for the standard. After component analysis, the microstructure and mechanical properties (tensile strength and elongation) were evaluated by ICP, gas analysis, OM, SEM, a Rockwell hardness tester and universal testing machine. The Ti-6Al-4V alloy ingot fabricated by EMCC was fabricated without segregation, and the lamellar structure was observed in the RRS and ST-FC specimens. The ST-WC specimen showed only martensite structure. As a result of evaluating the mechanical properties based on the microstructure results, we found that the water-cooled heat treatment condition after the solution treatment was most suitable for the Ti-6Al-4V ELI standard.

Thermal properties of the surface-modified Inconel 617 (표면 처리에 따른 Inconel 617 합금의 고온 특성)

  • Cho, Hyun;Bang, Kwang-Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.298-304
    • /
    • 2009
  • The effect of the surface treatments on the high temperature properties of the Inconel 617, one of the promising candidate alloys for high temperature heat-transport system, has been studied. Various surface modification methods including a rapid thermal process(RTP), a hydrothermal treatment, and a physical vapor deposition($2{\mu}m$ thick TiAlN film by an arc discharge) were applied to the Inconel 617. The morphological and the structural properties of the surface-modified Inconel 617 samples after heat treatment at $1000^{\circ}C$ in the air were compared to find out whether inhomogeneous formation of $Cr_2O_3$ crust at the surface region was suppressed or not. TiAlN-coated Inconel 617 showed homogeneous microstructure and the lowest wear loss compared to bare, RTP- and hydrothermally-treated Inconel 617 by suppressing the $Cr_2O_3$ crust formation.

Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy (분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향)

  • Choi, Young-Sin;Jang, Ji-Hoon;Kim, Gun-Hee;Lee, Chang-Woo;Kim, Hwi-Jun;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.340-345
    • /
    • 2018
  • Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

Thermal and Mechanical Properties of Rapidly Solidified Zr-Ni-Cu-Al-Ti Alloy (급냉응고법으로 제조한 Zr-Ni-Cu-Al-Ti 합금의 열적, 기계적 성질)

  • Choe, Ik-Seok;Han, Tae-Gyo;Ji, Yong-Gwon;Im, Byeong-Mun;Kim, Yeong-Hwan;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2001
  • The thermal and mechanical properties of amorphous Z $r_{62-x}$N $i_{10}$C $u_{20}$A $l_{8}$ $Ti_{x}$ (x=3, 6, 9at%) alloys were investigated. The crystallization process was confirmed as amorphous longrightarrow amorphous + Z $r_2$A $l_3$+ Zr + (Ni,Ti) longrightarrow Z $r_2$Cu + Al + (Ni,Ti) for 3at%Ti, amorphous longrightarrow amorphous + Al longrightarrow $Al_2$Ti + NiZr + CuTi for 6at%Ti and amorphous longrightarrow amorphous + Zr + Al longrightarrow Zr + $Al_2$Zr + Al $Ti_3$+ CuTi for 9at%Ti. lickers hardness ( $H_{v}$ ) increased with increasing volume fraction( $V_{f}$ ) of pricipitates for all concerned compositions. Tensile fracture strength ($\sigma_{f}$ ) showed a maximum value 1219MPa at $V_{f}$ = 38% for 3at%Ti, 1203MPa at $V_{f}$ = 2% for 6at%Ti and 1350MPa at $V_{f}$ = 5% for 9at%Ti. The $\sigma_{f}$ was rapidly decreased after showing the maximum value. The $V_{f}$ corresponding to rapidly decreased $\sigma_{f}$ coincided with the $V_{f}$ transited from ductile to brittle fracture surface.ace.

  • PDF

Biological response of primary rat calvarial cell by surface treatment of Ti-8Ta-8Nb alloy (Ti-8Ta-3Nb 합금의 표면처리에 의한 백서 두개관 세포의 반응)

  • Kim, Hae-Jin;Son, Mee-Kyoung;Park, Ji-Il;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.595-602
    • /
    • 2008
  • Purpose: Ti-6Al-4V alloy is widely used as an implant material because of its good biocompatibility and good mechanical property compared with commercial pure titanium. Otherwise, toxicity of aluminum and vanadium in vivo has been reported. Ti-8Ta-3Nb alloy is recently developed in the R&D Center for Ti and Special Alloys and it was reported that this alloy has high mechanical strength, no cytotoxicity and similar biocompatibility to commercial pure titanium, but many studies are needed for its clinical use. In these experiment, we carried out different surface treatment on each Ti-8Ta-3Nb alloy disks, then cultured cell on it and assessed biological response. Materials and Methods: cpTi, Ti-6Al-4V, Ti-8Ta-3Nb alloy disks were prepared and carried out sandblasting and acid etching (SLA) or alkali-heat treatment (AH) on the Ti-8Ta-3Nb alloy disks. We cultured primary rat calvarial cells on each surface and assessed early cell attachment and proliferation by scanning electron microscopy, cell proliferation, alkaline phosphatase activity. Result: The rates of cell proliferation on the cpTi, Ti-8Ta-3Nb AH disks were higher than others (p<0.05) and alkaline phosphatase activity was significantly enhanced on the Ti-STa-8Nb AH disks(p<0.05). Conclusion: Most favorable cell response was shown on the Ti-8Ta-3Nb AH surfaces. It is supposed that alkali-heat treatment of the Ti-8Ta-3Nb alloy could be induced earlier bone healing and osseointegration than smooth surface.