• Title/Summary/Keyword: Ti-xNb alloy

Search Result 50, Processing Time 0.023 seconds

Precipitation Behaviors of Hydroxyapatite on Highly Ordered Nanotubular Ti-35Ta-xNb Alloy Surface

  • Jo, Chae-Ik;Eun, Sang-Won;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.81-82
    • /
    • 2013
  • In this study, precipitation behaviors of hydroxyapatite on highly ordered nanotubular Ti-35Ta-xNb alloy surface were researched. Ta and Nb additions to Ti increased corrosion resistance. The surface characteristics of anodized alloy depended on the nanotube formed voltage and alloy element. The HA precipitation morphology was influenced by nanorubular structure of alloys.

  • PDF

Evaluation of Hydrogenation Properties on Ti-Nb-Cr Alloys by Single-Roll Melt Spinning (단롤주조법에 의한 Ti-Nb-Cr 합금의 제조와 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.433-439
    • /
    • 2009
  • Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. In order to solve the problem, the activation of a wide range of hysteresis of hydriding/dehydriding and without degradation of hydrogen capacity due to the hydriding/dehydriding cycle have to be improved in order to be aplied. Ti-Cr alloys have a high capacity about 0.8 wt.% in an ambient atmosphere. When the Ti-Cr alloys are added to Nb and Ta elements, they formed a laves phase in the alloy system. The Nb element was expected to make easy diffuse hydrogen in the Ti-Cr storage alloy, which was a catalytic element. In this study, the Ti-Nb-Cr ternary alloy was prepared by melt spinning. As-received specimens were characterized using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy) with EDX (Energy Dispersive X-ray) and TG/DSC (Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI (Pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423 K.

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

The Electrochemical Characteristics of Anodized Ti-29Nb-xZr Alloys

  • Lee, Kang;Choe, Han-Choel;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.219-219
    • /
    • 2009
  • In this study, electrochemical impedance characteristics of anodic oxide layer formed on titanium ternary alloy surface have been investigated, Titanium oxide layers were grown on Ti-29Nb-xZr(x=3, 5, 7, 10 and 15 wt%) alloy substrates using phosphoric acid electrolytes.

  • PDF

Electrochemical Properties of Ti-30Ta-(3~15)Nb Alloys Coated by HA/Ti Compound Layer (HA/Ti 복합층 코팅한 Ti-30Ta-(3~15)Nb 합금의 전기화학적 특성)

  • Jeong, Yong-Hoon;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Electrochemical properties of Ti-30Ta-$(3{\sim}15)$Nb alloys coated by HA/Ti compound layer have been studied by various electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10, and 15 wt% Nb contents were manufactured by the vacuum furnace system. The specimens were homogenized for 24 hrs at $1000^{\circ}C$. The samples were cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The HA/Ti non-coated and coated morphology of Ti alloy were analyzed by x-ray diffractometer(XRD) and filed emission scanning electron microscope(FE-SEM). The corrosion behaviors were investigated using potentiodynamic method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The homoginazed Ti-30Ta-$(3{\sim}15wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and ${\beta}$ phase peak was predominantly appeared with increasing Nb content. The microstructure of Ti alloy was transformed from needle-like structure to equiaxed structure as Nb content increased. HA/Ti composite surface showed uniform coating layer with 750 nm thickness. The corrosion resistance of HA/Ti composite coated Ti-alloys were higher than those of the non-coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

Effect of Oxygen Content on Shape Memory Characteristics of Ti-18Nb-6Zr-XO (X = 0~1.5at%) Alloys (생체용 Ti-18Nb-6Zr-XO (X = 0~1.5at%) 합금의 형상기억특성에 미치는 산소 농도의 영향)

  • Park, Young-Chul;Ock, Ji-Myeon;Oh, Jeong-Hwa;Park, Su-Ho;Lee, Jun-Hee;Kim, Jae-Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.617-622
    • /
    • 2011
  • The effect of oxygen on the shape memory characteristics in Ti-18Nb-6Zr-XO (X = 0-1.5 at%) biomedical alloys was investigated by tensile tests. The alloys were fabricated by an arc melting method at Ar atmosphere. The ingots were cold-rolled to 0.45 mm with a reduction up to 95% in thickness. After severe cold-rolling, the plate was solution-treated at 1173 K for 1.8 ks. The fracture stress of the solution-treated specimens increased from 450 Mpa to 880 MPa with an increasing oxygen content up to 1.5%. The fracture stress increased by 287MPa with 1 at% increase of oxygen content. The critical stress for slip increased from 430 MPa to 695 MPa with an increasing oxygen content up to 1.5 at%. The maximum recovery strain of 4.1% was obtained in the Ti-18Nb-6Zr-0.5O (at%) alloy. The martensitic transformation temperature decreased by 140 K with a 1.0 at% increase in O content, which is lower than that of Ti-22Nb-(0-2.0)O (at%) by 20 K. This may have been caused by the effect of the addition of Zr. This study confirmed that addition of oxygen to the Ti-Nb-Zr alloy increases the critical stress for slip due to solid solution hardening without being detrimental to the maximum recovery strain.

Evaluation of Hydrogenation Properties on Ti-Cr-Nb Alloys Manufactured by Arc Melting (아크용해법에 의한 Ti-Cr-Nb합금의 제조와 수소와 특성 평가)

  • Lee, Young-Geun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.482-489
    • /
    • 2008
  • Ti-Cr alloys consist of BCC solid solution, C36, C14 and C15 Laves phase at high temperature. Among others, the BCC solid solution phase was reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles must be improved for its application. In this study, to improve such problems, we added a Nb. For attaining target materials, Ti-10Cr-xNb(x=1, 3, 5wt.%) specimens were prepared by arc melting. The arc melting process was carried out under argon atmosphere. As-received specimens were characterized using XRD(X-ray diffraction), SEM(Scanning Electron Microscopy) with EDX(Energy Dispersive X-ray) and TG/DSC(Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI(pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423K.

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

Nanotube shape on the Ti-29Nb-xHf alloys with applied potentials

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.119-119
    • /
    • 2016
  • Over the last years the anodic formation of ordered $TiO_2$ nanotube layers has created significant scientific interest. Titanium oxide nanotube formation on the titanium or titanium alloy surface is expected to be important to improve cell adhesion and proliferation under clinical conditions. It should be possible to control the nanotube size and morphology for biomedical implant use by controlling the applied voltage, alloying element, current density, anodization time, and electrolyte. $TiO_2$ nanotubes show excellent biocompatibility, and the open volume in the tubes may be exploited as a drug release platform and so on. Therefore, in this study, Nanotube shape on the Ti-29Nb-xHf alloys with applied potentials was reserched. $TiO_2$ nanotube formation on Ti-29Nb-xHf alloys was carried out using anodization technique as a function of applied DC potential (10 V to 30 V and 30 V to 10 V) and anodization time for 60~120 min in $1MH_3PO_4$ with small additions of (0.8 wt. %, to 1.2 wt. %) NaF. The morphology change of anodized Ti-29Nb-xHf alloys was determined by FE-SEM, XRD, and EDS.

  • PDF

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF