• Title/Summary/Keyword: Ti-Nb-Sn alloy

Search Result 8, Processing Time 0.02 seconds

Microstructure and Corrosion Resistance of Ti-15Sn-4Nb Alloy with Hf Adding Element (Hf가 첨가된 생체용 Ti-15Sn-4Nb 합금의 미세조직 및 내식성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Cho, Kyu-Zong;Yoon, Taek-Rim;Park, Hyo-Byung
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2001
  • This study is focusing on the improvement of problems of Ti-6Al-4V alloy. A new Ti based alloy, Ti-15Sn-4Nb, have designed to examine any possibility of improving the mechanical properties and biocompatibility. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $100^{\circ}C$ for 24h. All specimens were solution treated at $812^{\circ}C$ and aged at $500^{\circ}C$ for 10h. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test and immersion test inl%Lactic acid solutions. Ti-15Sn-4Nb system alloys showed Widmanstatten microstructure after solution treatment which is typical microstructure of ${\alpha}+{\beta}$ type Ti alloys. Analysing the corrosion resistance of Ti alloys, it was concluded that the passive films of Ti-15Sn-4Nb system alloys are more stable than that of Ti-6Al-4V alloys. Also, the corrosion resistance of Ti-15Sn-4Nb system alloys was improved with adding elements, Hf. It was analysed that the passive film of the Ti-15Sn-4Nb alloy which was formed in air atmosphere was consisted of TiO2, SnO and NbO through X-ray photoelectron spectroscopy(XPS) analysis.

  • PDF

A Study on Corrosion Resistance and Mechanical Properties of Ti-15Sn System Alloys for Medical Implants (생체용 Ti-15Sn계 합금의 내식성 및 기계적 성질에 관한 연구)

  • Lee, Doh-Jae;Kim, Dae-Hwan;Park, Hyo-Byeong;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2000
  • The mechanical properties and corrosion resistance of Ti alloys for medical implants have been investigated. Ti, Ti-15Sn-4Nb and Ti-15Sn-4Nb-2Zr alloys were melted in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloys were analysed by optical microscope, hardness and tensile tester. The tensile strength of the pure-Ti improved by addition of Sn and Nb and Ti-15Sn-4Nb alloy showed better Rockwell hardness compared with pure Ti. However, there was no significant difference in corrosion resistance between thoseTi-alloys made of Pure-Ti and Ti-15Sn-4Nb alloy. The passive films on the Ti-15Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO as demonstrated by X-ray photoelectron spectroscopy(XPS)

  • PDF

A Study on Microstructure and Mechanical Properties of Hf, Ta Added Ti-l5Sn-4Nb system Alloys for Biomaterial (Hf, Ta가 첨가된 Ti-l5Sn-4Nb계 생체용 합금의 미세조직 및 기계적 성질에 관한 연구)

  • 김대환;이경구;박효병;이도재
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Ta and Hf added Ti-l5Sn-4Nb alloys without V and Al elements for biomaterial were melted by arc furnace in response to recent concerns about the long term safety of Ti-6Al-4V alloy. All specimens were homogenized at $1000^{\circ}C$ and solution treatment was performed at $812^{\circ}C$ and aging treatment at $500^{\circ}C$. The microstructure and mechanical properties were analysed by optical micrograph, hardness tester and instron. Ti-l5Sn-4Nb system alloys showed widmanstatten microstructure which is typical microstructure in $\alpha$$\beta$ type Ti alloys. The Ti-l5Sn-4Nb-2Hf and Ti-l5Sn-4Nb-2Ta alloys showed better hardness and tensile strength compared with Ti-6Al-4V. The result of XPS analysis, Ti-l5Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO.

  • PDF

Fabrication of Ultra Fine β-phase Ti-Nb-Sn-HA Composite by Pulse Current Activated Sintering

  • Woo, Kee-Do;Wang, Xiaopeng;Kang, Duck-Soo;Kim, Sang-Hyuk;Woo, Jeong-Nam;Park, Sang-Hoon;Liuc, Zhiguang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2010
  • The $\beta$ phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The $\beta$ phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from $\alpha$ phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The $\beta$-Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.

Fabrication of Bulk Metallic Glass Alloys by Warm Processing of Amorphous Powders (비정질 분말의 열간 성형법에 의한 벌크 비정질합금의 제조)

  • 이민하;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.193-201
    • /
    • 2004
  • 1960년 Au-Si계 합금에서 처음으로 비정질상이 급속 응고법에 의해 보고된 이래/sup 1)/ 지난 40년 간 많은 합금계에서 비정질상이 보고되어졌다. 대표적으로 Fe-, Ni-, Co기 합금 등 많은 합금계에서 비정질상이 보고되었으나, 비정질상의 형성을 위해서는 약 105 K/s이상의 높은 냉각속도를 필요로 하였다. 1980년대 수백 K/s의 낮은 냉각속도 하에서도 비정질상이 형성될 수 있는 다원계 합금(multi-component alloy)이 Mg-Ln-(Ni, Cu, Zn), Ln-Al-TM 합금에서 보고되어 졌으나 많은 관심을 받지 못하다가 1993년 Zr-Ti-Ni-Cu-Be 합금에서 수 ㎝ 크기의 비정질합금 제조가 보고되면서 전 세계적으로 많은 관심을 받게 되었다. Zr-Ti-Ni-Cu-Be계 벌크 비정질 합금이 보고된 후 Zr-(Nb,Pd)-Al-TM, Pd-Cu-Ni-P, Fe-Co-Zr-Mo-W-B, Ti-Zr-Ni-Cu-Sn등 여러 합금계에서 벌크 비정질 합금이 보고되었다. (중략)

Influence of Minor Element on Microstructure and Mechanical Properties of TiFe Ultrafine Eutectic Alloys (TiFe 공정합금의 미소합금 첨가에 따른 미세구조 변화 및 기계적 물성)

  • Lee, Chan Ho;Jo, Jae Hyuk;Mun, Sang Chul;Kim, Jung Tae;Yeo, Eun Jin;Kim, Ki Buem
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.615-619
    • /
    • 2012
  • Recently, ultrafine grained (ufg, typically 100 > d > 500 nm) Ti-Fe eutectic materials have been highlighted due to their extraordinarily high strength and good abrasion resistance compared to conventional coarse grained (cg, d > $1{\mu}m$) materials. However, these materials exhibit limited plastic strain and toughness during room temperature deformation due to highly localized shear strain. Several approaches have been extensively studied to overcome such drawbacks, such as the addition of minor elements (Sn, Nb, Co, etc.). In this paper, we have investigated the influence of the addition of Gd and Y contents (0.3-1.0 at.%) into the binary Ti-Fe eutectic alloy. Gd and Y are chosen due to their immiscibility with Ti. Microstructural investigation reveals that the Gd phase forms in the eutectic matrix and the Gd phase size increases with increasing Gd content. The improvement of the mechanical properties is possibly correlated to the precipitation hardening. On the other hand, in the case of Ti-Fe-Y alloys, with increasing Y contents, primary phases form and lamellar spacing increases compared to the case of the eutectic alloy. Investigation of the mechanical properties reveals that the plasticity of the Ti-Fe-Y alloys is gradually improved, without a reduction of strength. These results suggest that the enhancement of the mechanical properties is closely related to the formation of the primary phase.

Machine Learning-based Data Analysis for Designing High-strength Nb-based Superalloys (고강도 Nb기 초내열 합금 설계를 위한 기계학습 기반 데이터 분석)

  • Eunho Ma;Suwon Park;Hyunjoo Choi;Byoungchul Hwang;Jongmin Byun
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2023
  • Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.