• Title/Summary/Keyword: Ti-Mo-Fe

Search Result 105, Processing Time 0.024 seconds

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Geology and Mineral Resources of Colombia (콜롬비아 지질 및 광물자원 현황)

  • Koh, Sang-Mo;Lee, Gill-Gae;You, Byoung-Woon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2011
  • 콜롬비아는 안데스 산맥의 북단에 위치하며 NS 방향의 단층대를 기준으로 지질 환경의 차이가 크다. 단층대를 기준으로 동부지역은 원생대 변성암류와 이를 피복하는 고생대 변성퇴적암류가 주로 분포하며, 서부 지역은 고생대 퇴적암류, 중생대 화성암류, 제 3 기 화산양류 및 퇴적암류가 주로 분포한다. 지화학이상대는 6개 그룹으로 분류되며, 철 (Fe), 귀금속(Au, Ag, Pt), 기초금속(Cu, Pb, Zn), 희유금속(Sn, Cr, Co, Mn, Mo, Ni, Nb, W, V, Mg, Ti, Be, REE, Ga, Zr, Hf, Se, Te, Ta, Cd, In, Li 등) 빛 핵원료자원인 U 이상대로 구성된다. 콜롬비아의 주요 부존자원은 석탄, 니켈, 금 및 에메랄드이다. 에메랄드, 석탄 및 니켈은 세계적인 매장규모와 생산량을 보인다. 콜롬비아는 탐사가 거의 수행되지 않은 지역이 전 국토의 49%에 달해 광물부존 잠재성은 현재보다 크게 높을 것으로 보인다. 따라서 최근 콜롬비아와의 광물자원 협력이 강화되고 있는 시점에서 미탐사 지역을 대상한 공동탐사를 지화학 이상대가 확인된 지역을 중심으로 수행하여 신규광체를 확보하고, 광물자원 협력을 강화함으로써 공동개발 여건을 마련할 필요가 있다고 판단된다.

Mössbauer Spectroscopic Study on Colorative Mechanism of Celadon Glaze (청자 유약 발색메카니즘에 대한 뫼스바우어 분광법에 의한 연구)

  • Kim, Jong-Young;No, Hyung-Goo;Jeon, A-Young;Kim, Ung-Soo;Cho, Woo-Seok;Kim, Kyung-Ja;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Systematic study on relationship between celadon coloring and glaze component was conducted by chromaticity analysis and M$\ddot{o}$ssbauer spectroscopic analysis. The chromaticity ($L^*$, $a^*$, $b^*$ values) and M$\ddot{o}$ssbauer analysis results were correlated to the amount of $Fe_2O_3$, $TiO_2$, MnO, and $P_2O_5$, which are the essential factors influencing celadon coloring. According to chromaticity analysis, celadon glaze color belongs to GY group when the addition of $TiO_2$ was 1.4%, whereas the color belongs to BG group when the addition of $TiO_2$ was 0.1%. For the GY group, the colors change from GY to YR with the decrease of brightness as the addition of $TiO_2$, MnO, and $P_2O_5$ increases. According to M$\ddot{o}$ssbauer analysis results, as the amount of divalent iron ion increases, the $a^*$ and $b^*$ values decrease, on the other hand, $L^*$ value increases. The ratio of divalent iron ion produced in reductive sintering process is found to be 80~95% in this study, which induces the increase of $L^*$ values in celadon glaze.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF

Production of Ni-Cr Metal Powder by Selective Laser Melting for Dentistry to Observation of Characteristics (치과 SLM용 Ni-Cr 금속분말 특성 관찰)

  • Hong, Minho
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: The selective laser melting (SLM) process for dentistry, which is one of the additive manufacturing technologies (AM) allows for rapid production of a three-dimensional model with complex shape by directly melting metal powder. This process generates detailed items of a three-dimensional model shape through consolidation of a thin powder layer by utilizing both selective melting and laser beam simultaneously. In regard to SLM process, Fe-base powder, Ti-6AI-4V powder, AI-base powder, etc. have been researched. It is believed that the aforementioned technologies will be widely utilized in manufacturing metal parts using metal powder of raw material. This study chose Ni-Cr-Mo metal powder in order to manufacture metal powder materials that would be used in the selective laser melting for dentistry. Methods: This study manufactured metal powder using mechanical alloying technique (MA) among those metal powder manufacturing techniques. Moreover, this study aimed to utilize the metal powder manufactured after observing the characteristics of powder as preliminary data of Ni-Cr-Mo metal powder. This study could obtain the following conclusions within the experimental limitations. Results: As a result of mechanically alloying Ni-Cr-Mo powder over time, its mean particle size was $66.93{\mu}m$ $54.4{\mu}m$ and $45.39{\mu}m$ at 10h, 20h and 30h, respectively. The gtain form of metal powder by mechanical alloying technique was a sponge-like shape of irregular plate; however, the gtain form manufactured by high-pressure water aromization process had the following three types: globular type, chain type and oval type. Conclusion: This study found $37.65{\mu}m$ as the mean particle size of Ni-Cr-Mo metal powder, which was manufactured using water atomization technique under the following conditions: water atomization flux of 300 liter/min, hydraulic pressure of $400kgf/cm^2$ and injection angle of $45^{\circ}$. This study confirmed that the grain form of powder (solid particle form) would vary depending on the manufacturing process.

한국에 분포하는 한약자원식물의 무기물 함량에 관한 연구 제 2 보 ( The Mineral Content of Medical Wild Plant Resources in Korea ( II ) )

  • 이상래
    • Korean Journal of Plant Resources
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 1990
  • In view of the results to have measured metallic elements which is included in 40 sorts of herb medicines and surveyed their distribution, ninekinds of metals including Co, Ce, Ga, 71, Cd, As, Sbr Bu. Pb, are never orlittle included in almost herb medicines. Other twenty four sorts of ele-ments (Mo, Sc, Be, V, Ni, Su, Se, Ba, Cr, Su, Ti, B, Li, Mg, Ca, Sr, Mnl Fe,Cu, Zn. p, Al, Na, K) are metals that are included in large quentities incomparison with others. Selagirellae Radix contains is kinds of metallicelements more then other herb medicines does. The content of elements ofinorganic metal differs greatly according to the part of herb medicines .

  • PDF

한국에 분포하는 한약자원식물의 무기물 함량에 관한 연구 제1 보 ( The Mineral Content of Medical Wild Plant Resources in Korea ( I ) )

  • 이상래
    • Korean Journal of Plant Resources
    • /
    • v.3 no.2
    • /
    • pp.107-114
    • /
    • 1990
  • In view of the results to have measured metallic elements which is included in 45 sorts of herb medicines and surveyed their distribution, 8 kinds ofmetals including Co, Ge, Ga, TL, Cd, As, 8i, Pb, are never or little includedin almost herb medicines . Other twenty-five sorts of elements (Mo, Sc, Be, V,Ni, Sn, Se, Ba, Cr, Sb, Si, Ti, B, Li, Mg, Ca, Cr, Mn, Fe, Cu, Zn, p, Al, Na,K) are more or Less included in all herb Bedicines ana Na, Ca, p and K aremetals that are included in Large quentities in comrarison with others . Patri-uiae Radix Contains 7 kinds of metal lic elements more than other herb medicinesdoes .

  • PDF

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF

Effect of internal stress on cyclic fatigue failure in .06 taper ProFile (내부 응력이 .06 taper ProFile의 피로 파절에 미치는 영향)

  • Jung, Hye-Rim;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • Objectives: The purpose of this study was to evaluate the relation between intentionally induced internal stress and cyclic fatigue failure of .06 taper ProFile. Materials and Methods: Length 25 mm, .06 taper ProFile (Dentsply Maillefer), and size 20, 25, 30, 35 and 40 were used in this study. To give the internal stress, the rotary NiTi files were put into the .02 taper, Endo-Training-Bloc (Dentsply Maillefer) until auto-stop by torque controlled motor. Rotary NiTi files were grouped by the number of induced internal stress and randomly distributed among one control group and three experimental groups (n = 10, Stress 0 [control], Stress 1, Stress 2 and Stress 3). For cyclic fatigue measurement, time for separation of the rotary NiTi files was recorded. The fractured surfaces were observed by field emission scanning electron microscope (FE-SEM, SU-70, Hitachi). The time for separation was statistically analyzed using two-way ANOVA and post-hoc Scheffe test at 95% level. Results: In .06 taper ProFile size 20, 25, 30, 35 and 40, there were statistically significant difference on time for separation between control group and the other groups (p < 0.05). Conclusion: In the limitation of this study, cyclic fatigue failure of .06 taper ProFile is influenced by internal stress accumulated in the files.

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2000
  • Recently developed Austenite stainless steel, 309L was used to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also, the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied. 1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained. 2) The form of martensite at the transition region was occurred by reversible transformation during cooling since the interdiffusion of Cr and Ni from weld metal and Fe and C from base metals at the transition region, causes to lowering the concentration of Cr and Ni at the transition region, leading to increasing Ms point. 3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling. 4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the gain boundary.

  • PDF