• Title/Summary/Keyword: Ti-Alloy

Search Result 1,329, Processing Time 0.03 seconds

Manufacturing Process of the Ti-6Al-4V Billet by the Open-die Forging (자유형 단조 공정에 의한 Ti-6Al-4V 빌렛 제조기술)

  • Kim, K.J.;Choi, S.S.;Hwang, C.Y.;Kim, J.S.;Yeom, J.T.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.377-380
    • /
    • 2006
  • Manufacturing process of Ti-6Al-4V alloy billet was investigated with FEM simulation and experimental analysis. Before the breakdown process of Ti-6Al-4V alloy ingot, FEM simulation for the breakdown processes of Ti-6Al-4V alloy ingot was used to calculate the forging load and state variables such as strain, strain rate and temperature. In order to breakdown the ingot structure and make an equiaxed structure billet, two different processes were employed for a VAR/VAR processed Ti-6Al-4V alloy ingot. Firstly, the ingot was cogged in single-phase $\beta$ field at the temperature of $1,100^{\circ}C$. In the process, the coarse and inhomogeneous structure developed by the double melting process was broken down. The second breakdown was performed by upsetting and cogging processes in $\alpha+\beta$ phase field to obtain the microstructure of fine equixed $\alpha$ structure in the matrix of transformed $\beta$. Finally, the mechanical properties of Ti-6Al-4V alloy billet made in this work were compared with those of other billet and ring product.

  • PDF

Electrochemical Characteristics of HA Film on the Ti Alloy Using Pulsed Laser Deposition

  • Jeong, Yong-Hoon;Shin, Seung-Pyo;Chung, Chae-Heon;Kim, Sang-Sub;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • In this study, we have investigated the surface morphology of hydroxyapatite (HA) coated Ti alloy surface using pulsed laser plating. The HA (tooth ash) films were grown by pulsed KrF excimer laser, film surfaces were analyzed for topology, chemical composition, crystal structure and electrochemical behavior. The Ti-6Al-4V alloy showed ${\alpha}$ and ${\beta}$ phase, Cp-Ti showed ${\alpha}$ phase and the HA coated surface showed HA and Ti alloy peaks. The HA coating layer was formed with $1-2{\mu}m$ droplets and grain-like particles, particles which were smaller than the HA target particle, and the composition of the HA coatings were composed of Ca and P. From the electrochemical test, the pitting potential (1580 mV) of HA coated Ti-6Al-4V alloy was higher than those of Cp-Ti (1060 mV) and HA coated Cp-Ti (1350 mV). The HA coated samples showed a lower current density than non-HA coated samples, whereas, the polarization resistance of HA coated samples showed a high value compared to non-HA coated samples.

Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys (Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향)

  • Yoon, Jang-Won;Hyun, Yong-Taek;Kim, Jeoung-Han;Yeom, Jong-Taek;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

Effects of High-temperature UNSM Treatment on Wear Resistance of Ti-6Al-4V Alloy Prepared by Selective Laser Melting (Selective Laser Melting 방식으로 적층가공된 Ti-6Al-4V 합금의 내마모성 특성에 미치는 고온 UNSM 처리 영향에 대한 연구)

  • Sanseong, Choongho;Ro, Jun-Suek;Pyoun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) treatment at room and high temperatures (RT and HT of 400℃) on friction and wear behavior of Ti-6Al-4V alloy prepared by selective laser melting (SLM) were investigated. The objective of this study is to improve the mechanical properties and frictional behavior of Ti-6Al-4V alloy by UNSM treatment. Dry friction and wear tests were conducted using a ball-on-disk method at RT with a bearing steel as the counter ball. Due to the high HT and UNSM treatment, the surface hardness tended to increase and surface roughness tended to reduce. X-ray diffraction (XRD) analysis showed that nanocrystallization structure and compressive residual stress were formed at the surface layer after UNSM treatment at both RT and HT. After UNSM treatment, it was observed that the wear rate was reduced by about 6% for the specimen treated at RT and a 28% reduction for the specimen treated at HT in comparison with the untreated one. Based on scanning electron microscope (SEM) images showed that the damage caused by fatigue wear occurred in the wear track of the heat-treated specimen, and it is believed to be the cause of the highest wear rate. Mechanical properties and wear resistance of Ti-6Al-4V alloy were improved and prospect of industrial application was confirmed. Further research is still required to improve the characteristics of SLM Ti-6Al-4V alloy to the level of wrought Ti-6Al-4V alloy.

Effects of Thermomechanical Processing on Changes of Microstructure and Mechanical Properties in Ti-10Ta-10Nb Alloy (가공 열처리에 따른 Ti-10Ta-10Nb합금의 미세조직 및 기계적 특성 변화)

  • Lee, Doh-Jae;Hwang, Ju-Young;Lee, Kyung-Ku;Yoon, Kye-Lim;Jun, Choong-Geug
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 2005
  • Both commercially pure titanium and Ti-6Al-4V alloy have been widely used as biomaterials because of their excellent biocompatibility, corrosion resistance and mechanical properties. However, in recent years, vanadium has been found to cause cytotoxic effects and adverse tissue reactions, while aluminium has been associated with potential neurological disorders. A newly designed ${\alpha}+{\beta}$ type Ti alloy, Ti-10Ta-10Nb alloy showed superior properties to CP Ti and Ti-6Al-4V alloy in the point of biomaterial, and elucidated the future uses as a biomaterial. Microstructural changes of Ti-10Ta-10Nb alloy after hot-rolling, warm-rolling, solution and aging treatment were investigated. According to TEM results, the microstructures after solution treatment were composed of mostly ${\alpha}$ phase with a trace of ${\beta}$ phase due to adding ${\beta}$-phase stabilizer tantalum and niobium. The microstructures after warm-rolling is coarse and elongated ${\alpha}$ phase and hot rolling resulted in very fine ${\alpha}$ widmanst$\ddot{a}$tten. The highest value of hardness was obtained by aging treatment at $400^{\circ}C$ for 20hr in which microstructure consisted of very fine ${\alpha}$ phase in ${\beta}$ matrix.

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Study for Fatigue Crack Propagation Behavior of Ti-alloy (Ti 합금의 피로 특성 고찰)

  • 정화일;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.786-789
    • /
    • 1997
  • Ti-6Al-4V has been used widely in biomedical field. But because of its toxicity, the ${\beta}$ stabilizing element, V, in Ti-6Al-4V has been replaced by Nb, Ta. Ti-10Ta-10Nb has been developed for biomedical applications. The fatigue crack propagation behavior of Ti-alloy(Ti-10Ta-10Nb) was investigated, in comparison with that of pure Ti. In order to better understand the fundamental fatigue behavior of Ti-10Ta-10Nb, rotating bending fatigue tests have been carried out. Ti-10Ta-10Nb has a better fatigue strength than pure Ti. In this paper, fatigue life has been predicted with Nisitani's equation of the fatigue crack propagation that can be established by measuring fatigue crack growth rates.

  • PDF

Microstructure and Corrosion Resistance of Ti-15Sn-4Nb Alloy with Hf Adding Element (Hf가 첨가된 생체용 Ti-15Sn-4Nb 합금의 미세조직 및 내식성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Cho, Kyu-Zong;Yoon, Taek-Rim;Park, Hyo-Byung
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2001
  • This study is focusing on the improvement of problems of Ti-6Al-4V alloy. A new Ti based alloy, Ti-15Sn-4Nb, have designed to examine any possibility of improving the mechanical properties and biocompatibility. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $100^{\circ}C$ for 24h. All specimens were solution treated at $812^{\circ}C$ and aged at $500^{\circ}C$ for 10h. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test and immersion test inl%Lactic acid solutions. Ti-15Sn-4Nb system alloys showed Widmanstatten microstructure after solution treatment which is typical microstructure of ${\alpha}+{\beta}$ type Ti alloys. Analysing the corrosion resistance of Ti alloys, it was concluded that the passive films of Ti-15Sn-4Nb system alloys are more stable than that of Ti-6Al-4V alloys. Also, the corrosion resistance of Ti-15Sn-4Nb system alloys was improved with adding elements, Hf. It was analysed that the passive film of the Ti-15Sn-4Nb alloy which was formed in air atmosphere was consisted of TiO2, SnO and NbO through X-ray photoelectron spectroscopy(XPS) analysis.

  • PDF

고탄소계 Cr-Ti 합금강 레일재의 용접성에 관한 기초연구

  • 강계명;송진태
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.54-61
    • /
    • 1990
  • A pilot production is made to the high carbon Cr-Ti alloy rail steels with slight quantity of Cr & Ti added to the eutectoid carbon steel. As a part of weldability of these alloy steels, SH-CCT diagram for welding is first applied to the high carbon Cr-ti alloy rail steel with 0.1wt% Ti. The microstructure, which will be appeared at the HAZ of Enclosed-arc welding of this alloy rail seel, is a single phase of pearlite. As a result of this, it shows that the welding condition of Enclosed-arc welding applied to this alloy rail steel is a good condition.

  • PDF

Cu-based Bulk Amorphous Alloys in the Cu-Zr-Ti-Ni-Pd System (Cu-Zr-Ti-Ni-Pd계 비정질 벌크합금의 형성과 성질)

  • Kim, Sung-Gyoo;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.304-308
    • /
    • 2002
  • The new Cu-Zr-Ti-Ni-Pd amorphous alloy system has been introduced and manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties of the alloys were examined. The reduced glass transition temperature(Trg = Tg/Tm) and the supercooled liquid region(${\Delta}$Tx = Tx-Tg) of $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ alloy were 0.620 and 57 K respectively. $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ amorphous alloy was produced in the rod shape with 2mm diameter using the Cu-mold die casting. The hardness value of the amorphous bulk alloy was 432 DPN.