• Title/Summary/Keyword: Ti-Alloy

Search Result 1,329, Processing Time 0.025 seconds

The wetting and interfacial reaction of vacuum brazed junction between diamond grit(graphite) and Cu-13Sn-12Ti filler alloy (다이아몬드 Grit(흑연)/ Cu-13Sn-12Ti 필러합금 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chang-Hun;Lee, Chi-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.66-66
    • /
    • 2009
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites(diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature 940 $^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

  • PDF

The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy (다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chi-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

A Study on the Cutting Characteristics and Analysis by a FEM in the Machining of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 절삭특성과 FEM 해석 비교에 관한 연구)

  • 김남용;홍우표;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.29-35
    • /
    • 2001
  • The cutting characteristics of Ti-6Al-4V alloy and total wear when machining Ti-6Al-4V alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials present and future aerospace or met ical applications. Nowadays their usage has already been broaden to commercial applications such as golf club head, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloy in domestic facilities, the review and the study of the machining parameters far those alloys are deemed necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of tita mum alloys.

  • PDF

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

Phase Changes and Microstructural Properties of Ti Alloy Powders Produced by using Attrition Milling Method (어트리션 밀링법으로 제조된 티타늄합금의 상변화 및 미세조직특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • Microstructure and phase transformation of Ti-Ni-Cu alloy powders produced by using attrition milling method were studied. Mixed powders of Ti-(50-X)Ni-XCu ($X=0{\sim}20$ at%) in composition range were mechanically alloyed for maximum 20 hours by using SUS 1/4" ball in argon atmosphere. Ball to powder ratio was 50: 1 and impeller speed was 350rpm. Mechanically alloyed with attrition millimg method. powder was heat treated at the temperature up to $850^{\circ}C$ for 1 hour in the $10^{-6}$ torr vacuum. Ti-Ni-Cu alloy powders have been fabricated by attrition milling method. and then phase transformation behaviours and microstructual properties of the alloy powders were investigated to assist in improving the the high damping capacity of Ti-Ni-Cu shape memory alloy powders. The results obtained are as follows: 1. After heat treating of fully mechanically alloyed powder at $850^{\circ}C$ for 1hour. most of the B2 and B 19' phases was formed and $TiNi_3$ were coexisted. 2. The B 19' martensite were formed in Ti-Ni-Cu alloy powders whose Cu-content is less than 5a/o. where as the B19 martensite in those whose Cu-content is more than 10at%. 3. The powders of as-milled Ti-Ni-Cu alloys whose Cu-contents is less than 5at% are amorphous. whereas those of as-milled Ti-Ni-Cu alloys whose Cu-content is more than 10at% are crystalline. This means that Cu addition tends to suppress amorphization of Ti-Ni alloy powders.

  • PDF

Microsstructure of Sputter-Deposited and Annealed Cu-Cr, Cu-Ti Alloy Films on Polyimide Substrate and Their Adhesion Property (폴리이미드에 스퍼터 증착한 Cu-Cr, Cu-Ti 합금박막의 열처리 전후의 접착력과 미세구조)

  • 서환석;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.261-272
    • /
    • 1994
  • Both Cu-Cr and Cu-Ti alloy films with different composition were prepared by dc magnetron sputtering onto polyimide substrate and their adhesion and microstructure were observed. In addition, the effect of heat treatment at $400^{\circ}C$ for 2 hours on the variation of adhesion properties and on the changess of microstructure were investigated. Cu-Cr alloy films have crystalline structure of either for or bcc phase depending on the composition of the film. However, the Cu-Ti alloy film forms fcc phase at low Ti concentration while it forms an amorphous phase as the Ti concentration in the films is increased to more than 25at.%. TEM analysis reveal that the microstructure of Cu-Cr and Cu-Ti films forms an open structure with vacant spaces. The adhesion between Cu-Cr, Cu-Ti alloy films and polyimide substrate is relatively good before the heat treatment, but is noticeably reduced after the heat treatment. In particular, the adhesion strength is significantly reduced in the Cu-Ti alloy films after the heat treatment. The reduction of adhesion strength after the heat treatment is identified to relate with the formation of oxide phases at the metal/polyimide interface by AES(Auger Electron Spectroscopy).

  • PDF

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Effect of Heat Treatment on the Microstuctures and Mechanical Properties of TiC Dispersed Ni-base Alloy (TiC 분산된 니켈기 합금의 미세조직 및 기계적 특성에 미치는 열처리 영향)

  • Hong, Seong-Hyeon;Hwang, Keum-Chul;Rhee, Won-Hyuk;Chin, Eog-Yong
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2002
  • The microstructures and properties of TiC dispersed nickel-base alloy were studied in this work. The alloy prepared by powder metallurgical processing was solution treated, 1st-aged at $880^{\circ}C$ for 16 hours, and then 2nd-aged at $760^{\circ}C$ for 4 hours. Microstucture of sintered specimen showed that TiC particles are uniformly dispersed in Ni base alloy. In the specimen aged at $880^{\circ}C$ for 8 hours, the fine $\gammaNi_3$(Al,Ti) precipitates with round shape are observed and the very fine $\gammaNi_3$(Al,Ti) particles with round shape are precipitated in the specimen aged at $760^{\circ}C$ for 4 hours. The presence of ${\gamma}$precipitates in TiC/Ni base alloy increased the hardness and wear resistance of the specimen. The hardness and wear resistance of the Ni-base with TiC are higher than those of conventional Ni-base superalloy X-750 because of dispersion strengthening of TiC particles. The hardness, transverse rupture strength and resistance of the specimen 2nd-aged at $760^{\circ}C$ for 4 hours are higher than those of 1st-aged specimen due to ultrafine $\gammaNi_3$(Al,Ti) precipitates.

Development of New Titanium Alloys for Castings (주조용 티타늄 신합금 개발)

  • Kim, Seung-Eon;Jeong, Hui-Won;Hyeon, Yong-Taek;Kim, Seong-Jun;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

Identification and Microstructure Observation of Reaction Products formed at Alumina/Ag-33.5Cu-1.5Ti Brazing alloy Interface (알루미나의 Ag-33.5Cu-1.5Ti 브레이징 합금 계면에서 생성되는 반응층의 미세조직 관찰과 상 동정)

  • 최시경;권순용
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1045-1049
    • /
    • 1996
  • Pressureless-sintered polycrystalline alumina and carbon steel were joined with Ag-33.5Cu-1.5Ti (wt%) brazing alloy. SEM observation revealed that two reaction layers with different thicknesses were continuously formed between the alumina and the brazing alloy. A thick layer formed on the brazing alloy side was identified as Ti3(Cu0.93Al0.07)3O phase with diamond cubic structure. Another thin layer adjacent to the alumina was revealed as $\delta$-TiO phase of which the crystal structure was HCP with a lattice parameter of a0=0.419 nm and c0=0.284 nm. It was confirmed using XPS analysis that $\delta$-TiO was formed directly by a redox reaction of alumina with titanium ir, molten brazing alloy.

  • PDF