• Title/Summary/Keyword: Ti-6Al-4V

Search Result 473, Processing Time 0.039 seconds

A Study on the Machining Characteristics of Ti-6Al-4V Alloy (Ti-6Al-4V 타이타늄 합금의 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.20-28
    • /
    • 2003
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

Brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature (브레이징 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성)

  • Kee, Se-Ho;Park, Sang-Yoon;Heo, Young-Ku;Jung, Jae-Pil;Kim, Won-Joong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.169-175
    • /
    • 2012
  • Purpose: In this study, brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature were investigated. Materials and methods: The sample size of the $ZrO_2$ was $3mm{\times}3mm{\times}3mm$ (thickness), and Ti-6Al-4V was $10mm(diameter){\times}5mm(thickness)$. The filler metal consisted of Ag-Cu-Sn-Ti was prepared in powder form. The brazing sample was heated in a vacuum furnace under $5{\times}10^{-6}$ torr atmosphere, while the brazing temperature was changed from 700 to $800^{\circ}C$ for 30 min. Results: The experimental results shows that brazed joint of $ZrO_2$ and Ti-6Al-4V occurred at $700-800^{\circ}C$. Brazed joint consisted of Ag-rich matrix and Cu-rich phase. A Cu-Ti intermetallic compounds and a Ti-Sn-Cu-Ag alloy were produced along the Ti-6Al-4V bonded interface. Thickness of the reacted layer along the Ti-6Al-4V bonded interface was increased with brazing temperature. Defect ratios of $ZrO_2$ and Ti-6Al-4V bonded interfaces decreased with brazing temperature. Conclusion: Thickness and defect ratio of brazed joints were decreased with increasing temperature. Zirconia was not wetting with filler metal, because the reaction between $ZrO_2$ and Ti did not occur enough.

A Study of Electro-Discharge-Sintering of Ti-6Al-4V Spherical Powders Doped with Hydroxyapatite by Spex Milling and Its Consolidation Characteristics (Hydroxyapatite가 도핑된 Ti-6Al-4V 구형 분말의 전기방전 소결 및 소결체 특성에 관한 연구)

  • Cho, Y.J.;Kim, Y.H.;Jo, Y.H.;Kim, M.J.;Kim, H.S.;Kim, S.W.;Park, J.H.;Lee, W.H.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.376-381
    • /
    • 2013
  • Spherical Ti-6Al-4V powders in the size range of 250 and 300 ${\mu}m$ were uniformly doped with nano-sized hydroxyapatite (HAp) powders by Spex milling process. A single pulse of 0.75-2.0 kJ/0.7 g of the Ti-6Al-4V powders doped with HAp from 300 mF capacitor was applied to produce fully porous and porous-surfaced Ti-6Al-4V implant compact by electro-discharge-sintering (EDS). The solid core was automatically formed in the center of the compact after discharge and porous layer consisted of particles connected in three dimensions by necks. The solid core increased with an increase in input energy. The compressive yield strength was in a range of 41 to 215 MPa and significantly depended on input energy. X-ray photoelectron spectroscopy and energy dispersive x-ray spectrometer were used to investigate the surface characteristics of the Ti-6Al-4V compact. Ti and O were the main constituents, with smaller amount of Ca and P. It was thus concluded that the porous-surfaced Ti-6Al-4V implant compacts doped with HAp can be efficiently produced by manipulating the milling and electro-discharge-sintering processes.

The Fabrication of Hydroxyapatite Targets and the Characteristics of Hydroxyapatite/Ti-6Al-4V Alloy Thin Films by RF Sputtering(I) (RF 스퍼터링용 Hydroxyapatite 타겟의 제조 및 Hydroxyapatite/Ti-6Al-4V 합금 박막의 특성(I))

  • Jung, Chan-Hoi;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2003
  • RF sputtering process was applied to produce thin hydroxyapatite[HA, Ca10($PO_4$)$_{6}$ $ (OH)_2$films on Ti-6Al-4V alloy substrates. To make a 101.6 mm dia.${\times}$5 mm HA target, the commercial HA powder was first calcinated for 3h at $200^{\circ}C$. A certain amount of the calcinated HA powder was pressed under a pressure of 20,000 psi by the cold isostatic press(CIP) and the pressed HA target was sintered for 6 h at $1,200^{\circ}C$. The effects of different heat treating conditions on the bonding strength between HA thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the alloy substrates were annealed for 1 h at $850^{\circ}C$ under $3.0${\times}$10^{-3}$ Xtorr, and after deposition, the hydroxyapatite/Ti-6Al-4V alloy thin films were annealed for 1 h at 400, 600 and $800^{\circ}C$ under the atmosphere, respectively. Experimental results represented that the HA thin films on the annealed substrates had higher hardness than non-heat treated substrates before the deposition.

A Study on the Tool Wear and Cutting Characteristics in the Machining of Ti-6Al-4V using Tungsten Carbide Tool (초경공구를 사용한 Ti-6Al-4V 타이타늄 합금의 절삭가공시 공구마멸과 절삭특성에 관한 연구)

  • 김남용;홍우표;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.361-366
    • /
    • 2000
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior when machining Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. this material is one of the strong candidate materials present and future aerospace or medical applications. Nowadays their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are deemed necessary. this study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

  • PDF

Nanotube Morphology Change of Ti-6Al-4V Alloys by Heat Treatment

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.194-194
    • /
    • 2013
  • In order to investigate nanotube morphology change of Ti-6Al-4V alloys by heat treatments, the Ti-6Al-4V alloys were used in this study. In non-treated Ti-6Al-4V alloy case, nanotubes only exhibited at ${\alpha}$ phase region with dissolved V-oxide area of ${\beta}$ phase. However, in Ti-6Al-4V alloy at $800^{\circ}C$ WQ case, nanotubes exhibited at both ${\alpha}$ and ${\beta}$ phase region. Electrochemical corrosion studies showed that the nanotubular alloy at $800^{\circ}C$WQ possesses slightly higher corrosion resistance than non-treated nanotubular alloy.

  • PDF

Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 고온성형시 미세조직 예측에 관한 연구)

  • 이유환;신태진;황상무;박노광;심인옥;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.290-295
    • /
    • 2003
  • High temperature deformation behavior and prediction of final microstructure after forming of Ti-6Al-4V alloy were investigated in this study. Equiaxed and Widmanstatten microstructures of Ti-6Al-4V alloys were prepared as initial microstructures and compression tests were performed to obtain the flow curves at high temperatures (700∼110$0^{\circ}C$) and various strain rates (10$^{-4}$ ∼10$^2$/s). From the results of compression test, strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equation. To predict the final microstructure after farming, finite element analysis was performed considering the microstructural parameters such as grain size and volume fraction of second phase.

Porous and Porous Surfaced Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering : (2) Hardness and Compressive Strength (전기방전소결에 의해 제조된 다공성 및 다공성 표면을 갖는 Ti-6Al-4V 임플란트 : (2) 경도 및 압축강도)

  • Hyun, C. Y.;Huh, J. K.;Lee, W. H.
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.332-335
    • /
    • 2005
  • Porous and porous surfaced Ti-6Al-4V implant compacts were fabricated by electro-discharge-sintering (EDS) of atomized spherical Ti-6Al-4V powders with a diameter of $100-150\;{\mu}m$, The solid core formed in the center of the compact after discharge was composed of acicular ${\alpha}+{\beta}$ Widmanstatten grains, The hardness value at the solid core was much higher than that at the particle interface or particles in the porous layer, which can be attributed to both heat treatment and work hardening effects induced from EDS, The compressive yield strength was in a range of 19 to 436 MPa which significantly depends on both input energy and capacitance, Selected porous-surfaced Ti-6Al-4V implant compacts with a solid core have much higher compressive strengths compared to the human teeth and sintered Ti dental implants.

Densification Behavior of Ti-6Al-4V Powder Compacts at Room and High Temperatures (Ti-6Al-4V 분말 성형체의 상온 및 고온에서의 치밀화 거동)

  • Hong, Seung-Taek;Kim, Gi-Tae;Yang, Hun-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1124-1132
    • /
    • 2000
  • Viscoplastic response and densification behaviors of Ti-6AI-4V powder compacts under uniaxial compression are studied at room and high temperatures with various initial relative densities and strain rates. The yield function and strain-hardening law proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to compare experimental data with finite element calculations for porous Ti6A14V powder compacts. Displacement-relative density, displacement-load relations and deformed geometry of Ti-A14V powder compacts were compared with finite element results. Density distributions in Ti-6AI-4V powder compacts were also measured and compared with finite element results.

Prediction of microstructure during high temperature forming of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 고온성형 시 미세조직 예측에 관한 연구)

  • 이유환;신태진;황상무;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.57-60
    • /
    • 2003
  • The purpose of this study is to investigate the high temperature deformation behavior of Ti-6Al-4V alloy and to predict the final microstructure under given forming conditions. Equiaxed and widmanstatten of Ti-6Al-4V alloys were prepared as initial microstructure and the compression tests were performed to obtain the flow curves at high temperatures (700∼1100$^{\circ}C$) and various strain rates (10$\^$-4/∼10$^2$/s). Form the results of compression test various parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural parameters such as the grain size and the volume fraction of second phase.

  • PDF